Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\begin{cases}\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
Suy ra \(\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180\)
Lại có: \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180}{12}=15\)
Suy ra \(\widehat{A}=3\cdot15=45\)độ, \(\widehat{B}=4\cdot15=60\)độ, \(\widehat{C}=15\cdot5=75\)độ
Chúc bạn học tốt!
Tk giúp mk nha
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\)=180o ( tổng 3 góc của tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\\\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\\\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\end{cases}}\)
Vậy góc A=45o ; góc B=60o ; góc C=75o
Tổng số đo các góc của hình tam giác luôn bằng 360 độ
Số đo của góc A là:360:(3+5+7)x3=72 độ
Số đo của góc B là:72:3x5=120 độ
Số đo của góc C là:360-120-72=168 độ
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Gọi số đo các góc A,B,C lần lượt là a,b,c
Theo đề, ta co: \(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}=\dfrac{180+180+180-a-b-c}{3+4+5}=\dfrac{540-180}{12}=\dfrac{360}{12}=30\)
=>180-a=90; 180-b=120; 180-c=150
=>a=90; b=60; c=30
Gọi số đo các góc trong tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Gọi số đo các góc ngoài tam giác `ABC` lần lượt là `a, b, c (a,b,c \ne 0)`
Các góc ngoài đỉnh `A, B, C` lần lượt tỉ lệ với các số `3:4:5`
Nghĩa là: \(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}=\dfrac{180-a+180-b+180-c}{3+4+5}\)
\(=\dfrac{570-180}{12}=\dfrac{360}{12}=30\)
`->`\(\dfrac{180-x}{3}=\dfrac{180-y}{4}=\dfrac{180-z}{5}=30\)
`-> a=30*3=90, b=30*4=120, c=30*5=150`
`->`\(\left\{{}\begin{matrix}x=180^0-90^0=90^0\\y=180^0-120^0=60^0\\z=180^0-150^0=30^0\end{matrix}\right.\)
Vậy, các góc trong tam giác `ABC` lần lượt là `90^0, 60^0, 30^0.`
gọi số đo 3 góc đó là x;y;z
theo đề ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z=180 (tổng 3 góc của 1 tam giác là 1800)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\)
suy ra: \(\frac{x}{3}=15\Rightarrow x=45;\frac{y}{4}=15\Rightarrow y=60;\frac{z}{5}=15\Rightarrow z=75\)
Vậy số đo 3 góc đó là : 45o;60o;75o
3 góc đó lần lượt là 45o;60o;75o