K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

Gọi các góc của \(\Delta ABC\) là :a,b,c

a, Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4};a+b+c=180^o\)

Áp dụng t/c dtsbn , ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180^o}{9}=20^o\)

\(\Rightarrow\left\{{}\begin{matrix}a=40^o\\b=60^o\\c=80^o\end{matrix}\right.\)

\(\Rightarrow\)Số đo các góc của \(\Delta ABC:....\)

b,Ta có : \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3};a+b+c=180^o\)

Áp dụng t/c dtsbn , ta có :

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180^o}{6}=30^o\)

\(\Rightarrow\left\{{}\begin{matrix}a=30^o\\b=60^o\\c=90^o\end{matrix}\right.\)

\(\Rightarrow\)Số đo các góc của \(\Delta ABC\):...

20 tháng 11 2021

Gọi số đo ba góc của tg lần lượt là: \(a,b,c\left(a,b,c>0\right)\)

Áp dụng t/c dtsbn:

a. \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180^0}{9}=20\)

\(\Rightarrow\left\{{}\begin{matrix}a=40^0\\b=60^0\\c=80^0\end{matrix}\right.\)

câu b lm tương tự nhé!

20 tháng 11 2021

cả 2 phần cậu đều áp dụng tính chất dãy tỉ số bằng nhau đi

dễ mà

9 tháng 8 2016

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

11 tháng 8 2016

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

15 tháng 7 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

21 tháng 7 2021

Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html

11 tháng 11 2021

ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o

Theo để bài  ˆA3=ˆB4=ˆC5A^3=B^4=C^5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o

hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o

       ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o

       ˆC5=15o⇒ˆC=15o.5=75o

8 tháng 12 2021

Gọi số đo ba góc lần lượt là \(a,b,c\left(a,b,c>0\right)\)

Áp dụng tc dtsbn:

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)

\(=>\left\{{}\begin{matrix}a=30^0\\b=60^0\\c=90^0\end{matrix}\right.\)

Vậy...........

`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`

Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`

`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`

`-> x+y+z=180`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`

`-> x/2=y/3=z/4=20`

`->x=20*2=40, y=20*3=60, z=20*4=80`

Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`

a:

Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)

a/2=b/3=c/4

b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=>a=40; b=60; c=80