Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: =>-11/12x=-1/6-3/4=-2/12-9/12=-11/12
=>x=1
b: =>x-42=57-x-50=7-x
=>2x=49
hay x=49/2
d: =>x+1=3 hoặc x+1=-3
=>x=2 hoặc x=-4
e: =>2x+3=5 hoặc 2x+3=-5
=>2x=2 hoặc 2x=-8
=>x=1 hoặc x=-4
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)
a)
\(\dfrac{1}{2\cdot3}x+\dfrac{1}{3\cdot4}x+...+\dfrac{1}{49\cdot50}x=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=1\\ x\cdot\dfrac{12}{25}=1\\ x=1:\dfrac{12}{25}=1\cdot\dfrac{25}{12}=\dfrac{25}{12}\)
Nhận xét thấy:
\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...
Ta có
A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
A= 1- \(\dfrac{1}{6}\)
A= \(\dfrac{5}{6}\)
Vậy A= \(\dfrac{5}{6}\)
CAU NAY RAT DE NHA BAN
A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)
A=1-\(\dfrac{1}{6}\)
=>A=\(\dfrac{5}{6}\)
Sửa lại đề:
\(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{49.50}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-..........-\dfrac{1}{49}-\dfrac{1}{50}\)
\(M=1-\dfrac{1}{50}\)
\(M=\dfrac{50}{50}-\dfrac{1}{50}\)
\(M=\dfrac{49}{50}\)
Đề bài là thu gọn / tính giá trị biểu thức nhé chứ không phải là So sánh , thiếu dữ kiện kìa
Ta có: \(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(\Rightarrow M\) \(\)\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow M=1-\dfrac{1}{50}< 1\)
Vậy M < 1.
M=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}=\dfrac{50}{50}-\dfrac{1}{50}=\dfrac{49}{50}.\)
Vậy M=\(\dfrac{49}{50}\)
*Trước dấu = là 1 chữ M
Ta có: \(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\)
\(=\dfrac{a+1-a}{a\left(a+1\right)}\)
\(=\dfrac{1}{a\left(a+1\right)}\) (đpcm)
Ta được:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+...-\dfrac{1}{100}\) \(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
1)Tính
a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
2) tìm x
\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)
\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)
\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)
\(\dfrac{4}{5}x=0\)
\(x=0:\dfrac{4}{5}\)
\(x=0\)
b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)
\(\dfrac{2}{5}x=\dfrac{31}{10}\)
\(x=\dfrac{31}{10}:\dfrac{2}{5}\)
\(x=\dfrac{31}{4}\)
1. Tính:
a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{1}-\dfrac{1}{10}\)
= \(\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
= \(\dfrac{1}{1}-\dfrac{1}{100}\)
= \(\dfrac{100}{100}-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
2. Tìm x, biết:
a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)
\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)
\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{14}{5}\)
\(x=\dfrac{14}{5}:\dfrac{4}{5}\)
\(x=\dfrac{14}{5}.\dfrac{5}{4}\)
\(x=14.\dfrac{1}{4}\)
\(x=\dfrac{14}{4}\)
Vậy \(x=\dfrac{14}{4}\)
b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)
\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)
\(\dfrac{2}{5}x=\dfrac{62}{20}\)
\(\dfrac{2}{5}x=\dfrac{31}{10}\)
\(x=\dfrac{31}{10}:\dfrac{2}{5}\)
\(x=\dfrac{31}{10}.\dfrac{5}{2}\)
\(x=\dfrac{31}{2}.\dfrac{2}{2}\)
\(x=\dfrac{31}{2}.1\)
\(x=\dfrac{31}{2}\)
Vậy \(x=\dfrac{31}{2}\)
bài này mk tự làm ko sao chép trên mạng
nếu thấy đúng thì tick đúng cho mk nha
\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)x=1\)
\(\Rightarrow\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)x=1\)
\(\Rightarrow\left(\dfrac{1}{2}-\dfrac{1}{50}\right)x=1\)
\(\Rightarrow\dfrac{12}{25}x=1\)
\(\Rightarrow x=\dfrac{25}{12}\)
Vậy \(x=\dfrac{25}{12}\)
\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right).x=1\)
Ta có: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)
\(=\dfrac{3}{2.3}-\dfrac{2}{2.3}+\dfrac{4}{3.4}-\dfrac{3}{3.4}+...+\dfrac{50}{49.50}-\dfrac{49}{49.50}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{12}{25}\)
\(\Rightarrow\dfrac{12}{25}.x=1\Rightarrow x=1:\dfrac{12}{25}=\dfrac{25}{12}=2\dfrac{1}{12}\)
Vậy \(x=\dfrac{25}{12}\) hay \(x=2\dfrac{1}{12}\)
`A=1/(1.2)+1/(2.3)+1/(3.4)+....+1/(49.50)`
`=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50`
`=1-1/50=49/50`
hè công nhận ít câu hỏi thiệt !!