Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời đúng nhất ngắn gọn nhất
Xét abcd chia hết cho ab. cd. Đặt ab= m, cd=n thì 10m+n chia hết cho mm (1) . Đó n chia hết cho m . Đặt n=km(2) với k thuộc N , k<10, thay vào (1) ta được 100m+km chia hết cho mkm . Suy ra 100+k chia hết cho km . Suy ra 100 chia hết cho k suy ra k thuộc { 1,2,3,4,5}(vì k<10).
Thay vào 1,2,3,4,5 vào (1) và (2) ta được hai giá trị thỏa mãn đề bài là 1734 chia hết cho 17.34 và 1352 chia hết cho 13.52
Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd
abcd = ab . 100 + cd
abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)
abcd chia hết cho cd => ab. 100 chia hết cho cd => 100.ab = n.cd
=> 100.ab = m.n.ab => m.n = 100 => m = 1; 2; 4; 5;
+) m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab
=> không có số nào thỏa mãn
+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab => 51 chia hết cho ab
=> ab = 17 => cd = 34 => có số 1734
+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab = > ab = 13 => cd = 52
có Số 1352
+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab = 21 => cd = 105 Loại
Vậy có 2 số thỏa mãn: 1734 và 1352
Tìm số abcd (gạch đầu), biết rằng số đó chia hết cho tích các số ab và cd (gạch đầu hết)
Ta có
abcd chia hết cho ab.cd
100.ab+cd chia hết cho ab.cd
cd chia hết cho ab
Đặt cd=ab.k với k \(\in\) N và 1\(\le\)k\(\le\)9
Thay vào ta có
100.ab+k.ab chia hết cho k.ab.ab
=>100+k chia hết cho k.ab
=> 100 chia hết cho k
=> k \(\in\) {1;2;4;5}
- Xét k=1 thì thay vào thì 101 chia hết cho ab (loại)
- Với k=2 thì thay vào 102 chia hết cho 2.ab 51 chia hết cho ab và lúc đó thì :
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
- Với k=4 thì ta có 104 chia hết cho 4.ab => 26 chia hết cho ab nên
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
- Với k=5 thì thay vào ta có 105 chia hết cho 5.ab => 21 chia hết cho ab => ab=21 và cd=105 vô lí
Vậy ta được 2 cặp số đó là 1734;1352
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên... Đọc tiếp
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.
2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.
3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).
4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.
5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên đầu ) mà chia hết cho 36.
34x5y chia hết cho 36 khi 34x5y chia hết cho 4 và 9
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956
gọi số cần tìm là ab (a khác 0 và a; b là chữ số)
ab = 10a + b
ab chia hết cho tích a x b => 10a + b chia hết cho a x b
=> 10a + b chia hết cho a và 10a + b chia hết cho b
10a + b chia hết cho a => b chia hết cho a (do 10a chia hết cho a ) => b = a.k (k là chữ số )
10a + b chia hết cho b => 10a chia hết cho b mà do b chia hết cho a => 10a = b.q
=> 10a = a.k.q => 10 = k.q ; k là chữ số => k = 1; 2;5
+) k = 1=> a = b : ta có các số 11; 22;...; 99
=> có các số thỏa mãn : 11
+) k = 2 => b = 2a : ta có các số: 12; 24; 36; 48 ( trừ đi số 48 ; các số còn lại thỏa mãn)
+) k = 5 => b = 5a : ta có số : 15 (thỏa mãn)
Vậy có các số là: 11; 12; 24; 36; 15
abcd chia hết cho ab.cd
100.ab+cd chia hết cho ab.cd
cd chia hết cho ab
Đặt cd=ab.k với k thuộc N và 1k9
Thay vào ta có
100.ab+k.ab chia hết cho k.ab.ab
100+k chia hết cho k.ab
100 chia hết cho k
Từ và k thuộc {1;2;4;5}
Xét k=1 thì thay vào thì 101 chia hết cho ab (loại)
Với k=2 thì thay vào 102 chia hết cho 2.ab 51 chia hết cho ab và lúc đó thì
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
Với k=4 thì ta có 104 chia hết cho 4.ab 26 chia hết cho ab nên
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
Với k=5 thì thay vào ta có 105 chia hết cho 5.ab 21 chia hết cho ab ab=21 và cd=105 vô lí
Vậy ta được 2 cặp số đó là 1734;1352
Ta có
abcd chia hết cho ab.cd
100.ab+cd chia hết cho ab.cd
cd chia hết cho ab
Đặt cd=ab.k với k thuộc N và 1k9
Thay vào ta có
100.ab+k.ab chia hết cho k.ab.ab
100+k chia hết cho k.ab
100 chia hết cho k
Từ và k thuộc {1;2;4;5}
Xét k=1 thì thay vào thì 101 chia hết cho ab (loại)
Với k=2 thì thay vào 102 chia hết cho 2.ab 51 chia hết cho ab và lúc đó thì
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
Với k=4 thì ta có 104 chia hết cho 4.ab 26 chia hết cho ab nên
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
Với k=5 thì thay vào ta có 105 chia hết cho 5.ab 21 chia hết cho ab ab=21 và cd=105 vô lí
Vậy ta được 2 cặp số đó là 1734;1352
1. abcd0 - abcd = 3462
Ta đặt tính: abcd0
- abcd
3462
* 0 - d = 2 => d = 8 => 0 không trừ được 8, ta lấy 10 trừ 8 bằng 2 viết 2 nhớ 1
* d - (c + 1) = 6 => 8 - (c + 1) = 6 => c + 1 = 8 - 6 => c +1 = 2 => c = 1 => 1 thêm 1 là 2, 8 trừ 2 bằng 6 viết 6
* c - b = 4 => 1 - b = 4 => b = 7 => 1 không trừ được 7, ta lấy 11 trừ 7 bằng = 4 viết 4 nhớ 1
* b - (a + 1) = 3 => 7 - (a + 1) = 3 => a + 1 = 7 - 3 => a + 1 = 4 => a = 3 => 3 thêm 1 là 4, 7 trừ 4 bằng 3 viết 3
Như vậy ta có phép tính: 37180 - 3718 = 3462
2. Đề bài 2 của bạn bị sai rồi vì một số tự nhiên có 2 chữ số thì không thể có 2 số ở giữa được