K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

a) 5a + 12 = 5(a + 1) + 7

Để a + 1 là ước của 5a + 12 thì a + 1 là ước của 7

⇒ a + 1 ∈ Ư(7) = {1; 7}

⇒ a ∈ {0; 6}

b) 3a + 20 = 3(a + 2) + 14

Để (3a + 20) ⋮ (a + 2) thì 14 ⋮ (a + 2)

⇒ a + 2 ∈ Ư(14) = {1; 2; 7; 14}

Do a ∈ N nên a ∈ {0; 5; 12}

c) Do a ∈ N nên

a² + 16a ∈ Z (với mọi a ∈ N)

Vậy a² + 16a Z với mọi a ∈ N

d) 3ᵅ + 12 ∈ Z

⇒ 3ᵅ ∈ Z

⇒ a ∈ N

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

9 tháng 11 2016

_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_

ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do

19 tháng 10 2015

dài quá mình ko làm hết.

Câu 1:Tập hợp các số tự nhiên là bội của 13 và có phần tử.Câu 2:Có số vừa là bội của 3 vừa là ước của 54.Câu 3:Tập hợp các số tự nhiên sao cho là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 4:Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử làCâu 5:Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho...
Đọc tiếp

Câu 1:
Tập hợp các số tự nhiên là bội của 13 và có phần tử.

Câu 2:
Có số vừa là bội của 3 vừa là ước của 54.

Câu 3:
Tập hợp các số tự nhiên sao cho là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 4:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là

Câu 5:
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là

Câu 6:
Tổng của tất cả các số nguyên tố có 1 chữ số là

Câu 7:
Có bao nhiêu hợp số có dạng ?
Trả lời: có số.

Câu 8:
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố

Câu 9:
Cho là các số nguyên tố thỏa mãn . Tổng .

Câu 10:
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của hai số nguyên tố đó là .

0
Điền kết quả thích hợp vào chỗ (...):15:40Hãy điền số thích hợp vào chỗ .... nhé !Câu 1:Tập hợp các số có hai chữ số là bội của 41 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 2:Tập hợp các số có hai chữ số là bội của 32 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 3:Số các ước tự nhiên có hai chữ số của 45 làCâu 4:Tập...
Đọc tiếp

Điền kết quả thích hợp vào chỗ (...):

15:40

Hãy điền số thích hợp vào chỗ .... nhé !

Câu 1:
Tập hợp các số có hai chữ số là bội của 41 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 2:
Tập hợp các số có hai chữ số là bội của 32 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 3:
Số các ước tự nhiên có hai chữ số của 45 là

Câu 4:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là

Câu 5:
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là

Câu 6:
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố

Câu 7:
Tổng của tất cả các số nguyên tố có 1 chữ số là

Câu 8:
Số số nguyên tố có dạng là

Câu 9:
Có bao nhiêu số nguyên tố có dạng ?
Trả lời: số.

Câu 10:
Gọi A là tập hợp ước của 154. A có số tập hợp con là tập.

 

0
8 tháng 11 2016

CÂU 1: CÓ VÔ SỐ PHẦN TỬ. VD: 0; 13; 26; 39; ....

CÂU 2: Ư(45) CÓ HAI CHỮ SỐ = {15}

CÂU 3: THỎA MÃN CÁI GÌ VIẾT HẲN RA

CÂU 4: DƯ 0. VÌ SỐ CHẴN CHIA HẾT CHO 5 CÓ ĐUÔI BẰNG 0. CHIA HẾT CHO 2 LÀ CÁC SỐ CÓ ĐUÔI LÀ SỐ CHẴN.VD KO CỤ THỂ: (...0) + (...8) = (...8) LÀ SỐ CHẴN.

VD CỤ THỂ: A = 50             B = 22 (LẤY MỘT SỐ CHIA HẾT CHO 2 BẤT KÌ )

TA CÓ:  50 + 22 = 72 ; 72 : 2 = 36 ( DƯ 0)

CÂU 5: VIẾT RÕ ĐẦU BÀI RA

12 tháng 11 2016

1 có 7 phần tử