Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+2xy+y^2-4x=40\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+2xy+y^2\right)=41\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(x+y\right)^2=41\)
Vì x;y nguyên => 41 là tổng của 2 số CP
Ta có : \(41=16+25=4^2+5^2\)
Do \(\left(2x-1\right)^2\) là số CP lẻ \(\Rightarrow\left(2x-1\right)^2=5^2\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
\(\Rightarrow\left(x+y\right)^2=4^2\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}}\)
Với \(x=3\Rightarrow3+y=4\Rightarrow y=1\)(TM)
Với \(x=-2\Rightarrow-2+y=-4\Rightarrow x=-2\)(TM)
Vậy \(\left(x;y\right)\in\left\{\left(3;1\right);\left(-2;-2\right)\right\}\)
\(5x^2+y^2=17+2xy\)
\(\Leftrightarrow4x^2+\left(x-y\right)^2=17\)
Từ đây ta nhận xét rằng 17 tách thành tổng 2 số chính phương trong đó có 1 số chia hết cho 4. Từ đó ta có
[4x2, (x - y)2] = (16, 1)
Tới đây thì đơn giản rồi bạn tự làm tiếp nhé
học lớp 6 thôi,sai thôi nhé
Ta có (1-2x)y=-32+5x-2
Do x nguyên nên 1-2x khác 0
=>y=\(\frac{3x^2-5x+2}{2x-1}\)<=>4y=\(\frac{12x^2-20x+8}{2x-1}\)=6x-7+\(\frac{1}{2x-1}\)
Do x,y là số nguyên =>\(\frac{1}{2x-1}\)là số nguyên,nên 2x-1 thuộc (1;-1).Từ đó tìm đc (x;y) là (1;0),(0;-2)
\(\Delta\)không thì dùng cách này cho dễ
\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)
\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)
\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)
\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )
+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )
+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )
+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)
Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }
=> (x2 - 8).y2 - 2xy - x2 = 0 (*)
Tính \(\Delta\)' = (-x)2 - (x2 - 8 ). (-x2) = x4 - 7x2
Để x nguyên <=> \(\Delta\)' là số cính phương <=> x4 - 7x2 = k2 ( k nguyên)
=> 4x4 - 28x2 = 4k2 => (2x2 -14)2 = (2k)2 + 196
=> (2x2 - 14)2 - (2k)2 = 196
=> (2x2 - 14 - 2k). (2x2 - 14 + 2k) = 196 = 14.14 = (-14). (-14) = 2. 98 = (-2). (-98)
Nhận xét: 2x2 - 14 - 2k; 2x2 - 14 + 2k chẵn
+) Th1 : 2x2 - 14 - 2k = - 14; 2x2 - 14 + 2k = -14
=> k = 0 => x2 = 0 => x = 0 . thay vào (*) => y
Giá trị y nguyên là các giá trị thoa mãn
các trường hợp còn lại : tương tự
+) Th2: 2x2 - 14 - 2k = 14; 2x2 - 14 + 2k = 14:
+) Th3: 2x2 - 14 - 2k = 2; 2x2 - 14 + 2k = 98
+) Th4: 2x2 - 14 - 2k = - 2; 2x2 - 14 + 2k = -98