Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ax_1+bx_2+c=0\)
\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).
Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).
Thật vậy, ta có:
\(a^2c+ac^2+b^3-3abc=0\)
\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)
\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)
\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)
\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.
Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng.
Khi đó \(M=0+2018=2018\).
Đen ta =9(a+1)^2 - 4.a.(2a+4) (*) .Để phương trình có 2 nghiệm phân biệt thì đen ta >0 →(*) luôn đúng→x1=...;x2=... rồi thay vào biểu thức
phải ko nhể,có giống cách bạn làm ko ?
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:
\(x^2=2mx-2m+3\) (2)
<=> \(x^2-2mx+2m-3=0\)
Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m
=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết
=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt
___________
c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m
=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m
Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)
nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)
khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)
Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)
<=> \(15k^2-46k+63=0\)(3)
có: \(\Delta\)<0
=> (3) vô nghiệm
=> không tồn tại k
\(\left|x_1-x_2\right|=\frac{b}{a}=2\)
c=-3
4a+2b+c=1
bấm máy giải tìm a b c