Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\le3\)
\(P=\sqrt{3-x}-\left(3-x\right)+3=-\left(\sqrt{3-x}-\dfrac{1}{2}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)
\(P_{max}=\dfrac{13}{4}\) khi \(\sqrt{3-x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{11}{4}\)
Min của biểu thức này không tồn tại (nó chỉ tồn tại khi tam giác ABC là 1 tam giác suy biến nghĩa là 1 cạnh bằng 0)
a.
\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)
\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)
\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)
\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)
b. ĐKXĐ: \(x\le1\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)
\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)
\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14
có phưong pháp nào ko
nếu có thì bn giúp mk vs nhé
Bài làm:
đk: \(x\ge0\)
Ta có: Vì x không âm
=> \(-2x-2\sqrt{x}\le0\left(\forall x\right)\)
=> \(-2x-2\sqrt{x}+3\le3\left(\forall x\right)\)
=> \(P\le3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy P max = 3 khi x = 0