Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
a. ta có
3n+3 =3(n+1) luôn chia hết cho n+1 với mọi số tự nhiên n
b. ta có :\(5n+19\text{ chia hết cho 2n+1 thì }10n+38\text{ cũng chia hết cho 2n+1}\)
mà \(10n+38=5\left(2n+1\right)+33\text{ chia hết cho }2n+1\) khi 33 chia hết cho 2n+1
hay \(2n+1\in\left\{1,3,11,33\right\}\Rightarrow n\in\left\{0,1,5,16\right\}\)
\(a,\text{ }4n+2⋮2n+6\)
\(\Rightarrow4n+2+10-10⋮2n+6\)
\(\Rightarrow4n+12-10⋮2n+6\)
\(\Rightarrow2\left(2n+6\right)-10⋮2n+6\)
\(2\left(2n+6\right)⋮2n+6\)
\(\Rightarrow10⋮2n+6\)
\(\Rightarrow2n+6\inƯ\left(10\right)\)
\(\Rightarrow2n+6\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)
\(\Rightarrow2n\in\left\{-7;-5;-8;-4;-11;-1;-16;4\right\}\)
\(\Rightarrow n=2\)
b, 3n chia hết cho n
=> 38 chia hết cho n
=> n là ước tự nhiên của 38
a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).
Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )
\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .
Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).
*:chia hết cho 2n-3
Vì 3n+1 chia hết cho 2n-3=>2(3n+1)hay6n+2 chia hết cho 2n-3 (1)
Vì 2n-3 chia hết cho 2n-3 =>3(2n-3) hay 6n-9 chia hết cho 2n-3 (2)
Từ (1) và (2) =>(6n+2)-(6n-9) *
=>6n+2-6n+9 *
=>6n-6n+2+9 *
=>0+11 *
=>11 *
2n-3 1 11
n 2 7
Tick mik nha
Potter Harry chép của oOo La Hét Trong Toa Loét oOo chứ gì, giỏi thì giải chi tiết ra giùm mik
1. Ta có : 3n + 3 \(⋮n-1\Rightarrow3n-3+6⋮n-1\Rightarrow3\left(n-1\right)+6⋮n-1\)
Vì 3(n - 1) \(⋮\)n - 1
=> 6 \(⋮n-1\)
=> n - 1 \(\inƯ\left(6\right)=\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
<=> \(n\in\left\{0;2;3;4;7\right\}\)
2) 2n + 6 \(⋮n+1\Rightarrow2\left(n+1\right)+4⋮n+1\)
Vì 2(n + 1) \(⋮\)n + 1
=> 4 \(⋮n+1\)
=> \(n+1\in\left\{1;2;4;-1;-2;-4\right\}\)
<=> n \(\in\left\{0;1;3\right\}\)
3. 10n + 20 \(⋮2n+1\Leftrightarrow5\left(2n+1\right)+15⋮2n+1\)
Vì 5(2n + 1) \(⋮\)2n + 1
<=> 15 \(⋮\)2n + 1
=> 2n + 1 \(Ư\left(15\right)=\left\{1;3;5;15-1;-3;-5;-15\right\}\)
<=> \(n\in\left\{0;1;2;7\right\}\)
TL
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17