Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => n-1+3 chia hết n-1
Mà n-1 chia hết n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ước của 3
........
b)=> 2(n+1) +5 chia hết n+1
mà 2(n+1) chia hết n+1
=> 5 chia hết cho n+1
=> n+1 thuộc ước của 5
.......
a,Ta có :\(n+2⋮n-1\)
\(=>n-1+3⋮n-1\)
Do \(n-1⋮n-1\)
\(=>3⋮n-1\)
\(=>n-1\inƯ\left(3\right)\)
\(=>n-1\in\left\{-3;-1;1;3\right\}\)
\(=>n\in\left\{-2;0;2;4\right\}\)
b,\(2n+7⋮n+1\)
\(=>2.\left(n+1\right)+5⋮n+1\)
Do \(2.\left(n+1\right)⋮n+1\)
\(=>5⋮n+1\)
\(=>n+1\inƯ\left(5\right)\)
\(=>n+1\in\left\{-5;-1;1;5\right\}\)
\(=>n\in\left\{-6;-2;0;4\right\}\)
4n - 1 \(⋮n-2\)
4n - 8 + 7 \(⋮n-2\)
=> 7\(⋮n-2\)
=> n-2\(\in\text{Ư}\left(7\right)\)
=> n - 2\(\in\left\{-7;-1;1;7\right\}\)
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
a, n + 2 \(⋮n-3\)
<=> n - 3 + 5 \(⋮n-3\)
<=> 5 \(⋮n-3\)
=> n - 3 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
=> n = 4; 2; 8; -2 (thỏa mãn)
b, 3n + 15 \(⋮n-4\)
Có 3(n - 4) \(⋮n-4\)
=> (3n + 15) - (3n - 12) \(⋮n-4\)
<=> 27 \(⋮n-4\)
=> n - 4 \(\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
=> n = 5; 3; 7; 1; 13; -5; 31; -23 (thỏa mãn)
@hoang thuy an
c, 2n - 3 \(⋮3n+2\)
<=> 3(2n - 3) \(⋮3n+2\)
<=> 6n - 9 \(⋮3n+2\)
Có 2(3n + 2) \(⋮3n+2\)
=> (6n - 9) - (6n + 4) \(⋮3n+2\)
<=> -13 \(⋮3n+2\)
=> 3n + 2 \(\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
=> 3n = -1; -3; 11; -15
=> n = -\(\dfrac{1}{3};-1;\dfrac{11}{3};-5\)
Mà n \(\in Z\Rightarrow n=-1;-5\)
d, 4n + 7 \(⋮3n+1\)
<=> 3(4n + 7) \(⋮3n+1\)
<=> 12n + 21 \(⋮3n+1\)
Có 4(3n + 1) \(⋮3n+1\)
=> (12n + 21) - (12n + 4) \(⋮3n+1\)
<=> 17 \(⋮3n+1\)
=> 3n + 1 \(\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
=> 3n = 0; -2; 16; -18
=> n = 0; -\(\dfrac{2}{3};\dfrac{16}{3};-6\)
Mà n \(\in Z\Rightarrow n=0;-6\)
@hoang thuy an
d,Gọi ƯCLN (n.(n+1) /2 , 2n+1 ) =d
=) n.(n+1) /2 chia hết cho d
2n+1 chia hết cho d
=)2.(n.(n+1) /2) chia hết cho d
2n+1 chia hết cho d
=)2n2+2n chia hết cho d
2n+1 chia hết cho d
=) ( 2n2+2n) - (2n2+n)chia hết cho d
=)n chia hết cho d
Lại có 2n+1 chia hết cho d
=) 2n chia hết cho d
2n +1 chia hết cho d
=) (2n +1 ) - (2n ) chia hết cho d
=) 1 chia hết cho d
=) d thuộc Ư ( 1)
=) d=1
Vậy n.(n+1) /2 và 2n + 1 là hai số nguyên tố cùng nhau
a, 2n + 5 và 3n + 7
Gọi ƯCLN ( 2n+5, 3n + 7)=d
=) 2n+5 chia hết cho d , =) 3. (2n+5) chia hết cho d
3n +7 chia hết cho d , 2. ( 3n+7) chia hết cho d
=) 6n+15 chia hết cho d
6n+14 chia hết cho d
=)(6n+15 )- (6n+14) chia hết cho d
=) 1 chia hết cho d
=) d thuộc ƯC ( 1 )
=) ƯCLN (2n+5,3n+7)=1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Câu b , c tượng tự bạn nhé !