K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Bài 1: Giả sử \(C\ge0\)

Ta có:

\(C=b^3-a^3-6b^2-a^2+9b\ge0\)

\(\Leftrightarrow\left(b^3-6b^2+9b\right)-\left(a^3+a^2\right)\ge0\Leftrightarrow b\left(b^2-6b+9\right)-a^2\left(a+1\right)\ge0\)

\(\Leftrightarrow b\left(b-3\right)^2-a^2\left(a+1\right)\ge0\)

\(a+b=3\Rightarrow b=3-a\)

\(\Rightarrow C=\left(3-a\right)\left(3-a-3\right)^2-a^2\left(a+1\right)\ge0\Leftrightarrow a^2\left(3-a\right)-a^2\left(a+1\right)=a^2\left(2-2a\right)\ge0\)

Ta có: \(a^2\ge0;a\le0\Rightarrow2a\le0\Rightarrow-2a\ge0\Rightarrow2-2a\ge2\Rightarrow C\ge0\)(luôn đúng)

Bài 2: để suy nghĩ đã á

 

 

10 tháng 11 2016

nhanh len

17 tháng 2 2018

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

26 tháng 2 2019

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay

12 tháng 2 2017

4a2+9b2+16c2=4a+6b+8c+3 <=>4a2-4a+1+9b2-6b+1+16c2-8c+1=6 <=> (2a-1)2+(3b-1)2+(4c-1)2=6. hướng dẫn đến đây nhe bạn

10 tháng 8 2016

a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)

\(=\left(2a-3b\right)\cdot9b^2\)

 

 

10 tháng 8 2016

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)

= ...........

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2