Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2=y^2+2y+13\Leftrightarrow x^2-y^2-2y-1=12\Leftrightarrow x^2-\left(y+1\right)^2=12\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-y-1\right)=12\)
Xét thấy x+y+1>x-y-1 và x+y+1; x-y-1 là Ư(12) nên ta có bảng sau :
x+y+1 | 12 | 6 | 4 | -3 | -2 | -1 |
x-y-1 | 1 | 2 | 3 | -4 | -6 | -12 |
x | ||||||
y |
từ pt suy ra((x-5)^2+4)((y+3)^2+5)-20=0
((x-5)(y+3))^2+5(x-5)^2+4(y+3)^2+20-20=0
((x-5)(y+3)^2+5(x-5)^2+4(y+3)^2=0
suy ra x=5,y=-3
Có thể thay đề bài từ tìm nghiệm nguyên thành tìm nghiệm.
Ta có: \(x^2-10x+29=\left(x-5\right)^2+4\ge4>0;y^2+6y+14=\left(y+3\right)^2+5\ge5>0\).
Từ đó \(\left(x^2-10x+29\right)\left(y^2+6y+14\right)\ge4.5=20\).
Do đẳng thức xảy ra nên ta phải có: \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\).
Vậy...
Cho 3x + 5xy = 6y + 5 = 0
Chuyển vế rồi tính