Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chưa học phương trình nên giải theo cách của lớp dưới thôi :)))
Vì \(\hept{\begin{cases}345⋮5\\5y^2⋮5\end{cases}}\Rightarrow3x^2⋮5\)
Mà \(\left(3;5\right)=1\Rightarrow x^2⋮5\Rightarrow x⋮5\)
Lại có \(3x^2\le345\Rightarrow x^2\le115\Rightarrow\left|x\right|\le10\)
Mà \(x⋮5\Rightarrow x\in\left\{0;\pm5;\pm10\right\}\)
- \(x=0\Rightarrow y^2=\frac{345}{5}=69\)không phải số chính phương
- \(x=\pm5\Rightarrow3.25+5y^2=345\)
\(\Rightarrow y^2=\frac{345-3.25}{5}=54\)không phải số chính phương
- \(x=\pm10\Rightarrow3.100+5.y^2=345\)
\(\Rightarrow y^2=\frac{345-3.100}{5}=9\Rightarrow y=\pm3\)
Vậy \(\left(x;y\right)\in\left\{\left(10;3\right);\left(10;-3\right);\left(-10;3\right);\left(-10;-3\right)\right\}\)
\(3x^2+5y^2=345=>x^2=\frac{345-5y^2}{3}=>x=\sqrt{\frac{345-5y^2}{3}}\)
MODE 7 (TABLE) nhập \(f\left(x\right)=\sqrt{\frac{345-5X^2}{3}}\)
start -9 end: 9 ,step=1
tìm đc \(\left(x;y\right)=\left(10;3\right);\left(3;10\right);\left(-10;-3\right);\left(-3;-10\right)\)
đây là sử dụng máy tính casio
Chuyển vế ta được:
y2+2(x6−3x3y−32)=0y2+2(x6−3x3y−32)=0
↔y2−6x3y+(2x6−64)=0<1>↔y2−6x3y+(2x6−64)=0<1>
Nhận thấy coi <1><1> là phương trình bậc hai ẩn yy
Do đó để phương trình có nghiệm và hơn nữa là nghiệm nguyên thì Δ=(6x3)2−4(2x6−64)Δ=(6x3)2−4(2x6−64) phải chính phương
Do đó đặt x3=kx3=k và (6x3)2−4(2x6−64)=q2(6x3)2−4(2x6−64)=q2
Như vậy 36k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t236k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t2
Nếu tt lẻ thì kk lẻ do đó 7k2+64≡3(mod4)→t2≡3(mod4)7k2+64≡3(mod4)→t2≡3(mod4) vô lý do số chính phương chia 44 dư 0,10,1
Như vậy tt chẵn nên kk chẵn và t=2b,k=2a→7a2+16=b2t=2b,k=2a→7a2+16=b2
Lập luận tương tự cũng cób,ab,a chẵn nên a=2m,b=2n→7m2+4=n2a=2m,b=2n→7m2+4=n2
Lập luận tương tự một lần nữa có m,nm,n chẵn nên m=2p,n=2q→7p2+1=q2<2>m=2p,n=2q→7p2+1=q2<2>
Tổng hợp các phương trình trên có k=8p,t=8qk=8p,t=8q như vậy x3=8p→2|x→x=2s→s3=px3=8p→2|x→x=2s→s3=p
Khi ấy bài này trở thành 7s6+1=q27s6+1=q2
Nhận xét: 345 và 5y^2 chia hết cho 5 nên 3x^2 chia hết cho 5 => x^2 chia hết cho 5 mà 3x^2 < 345 => x^2 < 345 : 3 = 115
=> x^2 = 25; 100 => y2 = 54 hoặc 9
=> chọn x^2 = 100 và y^2 = 9
=> x = 10 ; -10
y = 3; -3
Ta có: 5y2 chia hết cho 5; 345 chia hết cho 5.
Vậy: 3x2 phải chia hết cho 5.
=> x chia hết cho 5
Trường hợp 1: x = 0
=> PT vô nghiệm.
Trường hợp 2: x = 5
=> PT vô nghiệm
Trường hợp 3: x = 10
=> PT có nghiệm x = 10; y = 3
Trường hợp 4: x >= 15
=> VT > VP
=> PT có nghiệm duy nhất: x = 10, y = 3.