Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x) có nghiệm <=>f(x)=0
<=>x2+2x+1=0
<=>(x+1)2=0
<=>x+1=0
<=>x=-1
Ta có: f(x)=x.x+x+x+1.1=0
=x(x+1)+1(x+1)=0
=(x+1)2=0
=> x+1=0
=> x=-1
Tham khảo:Câu hỏi của Victor JennyKook - Toán lớp 7 - Học toán với OnlineMath
a) A(x)+B(x)=(x^3+3x^2-4x-12)+(-2x^3+3x^2+4x+1)
=x^3+3x^2-4x-12-2x^3+3x^2+4x+1
=(x^3-2x^3)+(3x^2+3x^2)-(4x-4x)-(12-1)
=-x^3+6x^2-11
b) A(x)-B(x)=(x^3+3x^2-4x-12)-(-2x^3+3x^2+4x+1)
=x^3+3x^2-4x-12+2x^3-3x^2-4x-1
=(x^3+2x^3)+(3x^2-3x^2)-(4x+4x)-(12+1)
=3x^3-8x-13
c) Thay x=2 vào 2 đa thức A(x) và B(x) ta có
A(2)=2^3+3*2^2-4*2-12
=8+12-8-12
=0
B(2)=-2*2^3+3*2^2+4*2-1
=-16+(-4)+8-1
=-13
Vậy x=2 là nghiệm của đa thức A(x) và không là nghiệm của đa thức B(x)
Xét M(x)=0
=>-2x3 +5x2+8x+\(\frac{2}{3}\)=0
=>-2x2 .x + 5x.x+8x+\(\frac{2}{3}\)=0
=>x.(-2x2 +5x + 8 ) +\(\frac{2}{3}\) =0
=>\(\left\{{}\begin{matrix}X.\frac{2}{3}=0\\-2x^2+5x+8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\-2x.x+5x+8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\3x.x+8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\3x^2+8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\3x^2=-8\end{matrix}\right.\)
sau đó bn ghi ở dòng 2 là vô lý vì\(\left\{{}\begin{matrix}3x^2>0\\-8< 0\end{matrix}\right.\)
=> Nghiệm của đa thức trên là :x=0
a) f(x)+g(x)=(2x3-x2+5)+(x2+2x-2x3-1)
=2x3-x2+5+x2+2x-2x3-1
=(2x3-2x3)+(-x2+x2)+2x+(5-1)
=2x+1
Vậy f+g=2x+1
f(x)-g(x)=(2x3-x2+5)-(x2+2x-2x3-1)
=2x3-x2+5-x2-2x+2x3+1
=(2x3+2x3)+(-x2-x2)-2x+(5+1)
=4x3-2x2-2x+6
Vậy f-g=4x3-2x2-2x+6
g(x)-f(x)=(x2+2x-2x3-1)-(2x3-x2+5)
=x2+2x-2x3-1-2x3+x2_5
=(-2x3-2x3)+(x2+x2)+2x+(-1-5)
=-4x3+2x2+2x-6
Vậy g-f=-4x3+2x2+2x-6
a) \(P\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(P\left(x\right)=\left(2x^4-x^4\right)+\left(5x^3-x^3-4x^3\right)+\left(3x^2-x^2\right)+1\)\
\(P\left(x\right)=x^4+2x^2+1\)
b) \(P\left(1\right)=1^4+2.1^2+1=1+2+1=4\)
\(P\left(-2\right)=\left(-2\right)^4+2\left(-2\right)^2+1=16+8+1=25\)
c) Đặt \(P\left(x\right)=x^4+2x^2+1=0\Rightarrow x^4+2x^2=-1\)
Mà \(x^4;2x^2\ge0\forall x\Rightarrow x^4+2x^2\ge0\Rightarrow x^4+2x^2\ne-1\)
Suy ra P(x) vô nghiệm