Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B(x)=\(4x^5\) -\(2x^4\) +\(3x^3\) -\(2x^2\) +\(4x\) +\(\dfrac{-1}{2}\)
b) C(x)=\(2x^4-x^3+\dfrac{1}{2}+4x\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0
nên x + 1/2 = 0 hoặc x-3 = 0
vậy x = -1/2 và x = 3
Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3
b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0
Vậy x = 0 hoặc x = 1
Đa thức D(x) có 2 nghiệm là x1= 0 và x2 = 1
c, Thay E(x) = 0
nên x3 + 8 = 0 => x3 = -8 => x = -2
Vậy đa thức E(x) có 1 nghiệm là x = -2
d, Thay F(x) = 0 nên 2x - 5 + (x-17) = 0
=> 2x - 5 + x - 17 = 0
=> 3x -22 = 0
=> 3x = 22
x = 22/3
Vậy đa thức F(x) có 1 nghiệm là x = 22/3
e, Thay C(x) = 0 nên x2 - 9 = 0
x2 = 9 => x = 3 hoặc x = -3
Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3
f, Thay A(x) = 0 nên x2 - 4x = 0
=> x.(x - 4) = 0
=> x = 0 và x = 4
Vậy đa thức A(x) có 2 nghiệm là x1=0 và x2 = 4
g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0
Vậy 2x + 4 = 0 và 7-14x =0
=> x = -2 và x = 1/2
Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2
h, G(x) = 0 nên (3x-5) - (18-6x) = 0
=> 3x - 5 - 18 + 6x = 0
=> 9x - 23 = 0
=> 9x = 23
x = 23/9
Vậy đa thức này có 1 nghiệm là x = 23/9
a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)
B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)
Vậy nghiệm của B(x) là -1/2 và 3
b) D(x) = \(x^2-x\)
D(x) = 0 <=> \(x^2-x=0\)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy nghiệm của D(x) là 0 và 1
c) E(x) = \(x^3+8\)
E(x) = 0 <=> x3 + 8 = 0
<=> x3 = -8
<=> x3 = -23
<=> x = 3
Vậy nghiệm của E(x) là 3
d) F(x) = 2x - 5 + ( x - 17 )
F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0
<=> 2x + x + ( -5 - 17 ) = 0
<=> 3x - 22 = 0
<=> 3x = 22
<=> x = 22/3
Vậy nghiệm của F(x) là 22/3
f) A(x) = x2 - 4x
A(x) = 0 <=> x2 - 4x = 0
<=> x( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy nghiệm của A(x) là 0 và 4
g) H(x) = ( 2x + 4 )( 7 - 14x )
H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )
<=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
Vậy nghiệm của H(x) là -2 và 1/2
h) G(x) = ( 3x - 5 ) - ( 18 - 6x )
G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0
<=> 3x - 5 - 18 + 6x = 0
<=> 3x - 23 = 0
<=> 3x = 23
<=> x = 23/3
Vậy nghiệm của G(x) là 23/3
\(M\left(x\right)+N\left(x\right)\)
\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)
\(=2x^4+5x^3-3x^2+2x-3\)
\(M\left(x\right)-N\left(x\right)\)
\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)
\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)
\(=-2x^4+5x^3+x^2-2x-5\)
\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)
\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)
\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
\(a,A\left(x\right)=2x+3\)
Có \(2x+3=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(-\frac{3}{2}\)là 1 nghiệm của đa thức A(x)
\(b,B\left(x\right)=4x^2-25\)
\(\Rightarrow B\left(x\right)=\left(2x\right)^2-25\)
Có \(B\left(x\right)=0\Rightarrow\left(2x\right)^2-25=0\)
\(\Rightarrow\left(2x\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x=5\\2x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy -5/2 là 1 nghiệm của B(x)
\(c,C\left(x\right)=x^2-7\)
Có \(C\left(x\right)=0\Leftrightarrow x^2-7=0\)
\(\Rightarrow x^2=7\)
\(\Rightarrow x=\orbr{\begin{cases}\sqrt{7}\\-\sqrt{7}\end{cases}}\)
Vậy \(\sqrt{7};-\sqrt{7}\)là 2 nghiệm của C(x)
\(d,D\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(D\left(x\right)=x-2x^2+2x^2-x+4\)
\(D\left(x\right)=4\)
Vậy D(x) vô nghiệm
+) Ta có: A(x) = 2x + 3 = 0
(=) 2x = -3
(=) x = \(\frac{-3}{2}\).
+) Ta có: B(x) = 4x2 -25 = 0
(=) 4x2 = 25
(=) (2x)2 = 52
=> 2x = 5
(=) x = \(\frac{5}{2}\).