Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-4x + 1 = 0
-4x = -1
x = \(\frac{1}{4}\)
Vậy x = 1/4 là nghiệ của đa thức trên
-x^2 + 2x = 0
x(-x + 2) = 0
- x = 0
- -x + 2 = 0
-x = -2
x = 2
Vậy x = 0 và x = 2 là nghiệ của đa thức trên
Chúc bạn học tốt
a)M(x)=-4x+1
Ta có:M(x)=-4x+1=0
=-4x=-1
x=-1:(-4)
x=\(\frac{1}{4}\)
Vậy x=\(\frac{1}{4}\)
b) N(x) = -x2 + 2x
Ta có:-x2 + 2x=0
=x.-x+2x=0
=x.(-x+2)=0
\(\Rightarrow\)x=0
hoặc -x+2=0
\(\Rightarrow\)x=0
hoặc -x=-2
\(\Rightarrow\)x=0
hoặc x=2
Vậy x=0;2
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
a) Bậc của đa thức là số mũ của hạng tự cao nhất trong đa thức đó.Nên bậc của đa thức đó là 2
b) \(P\left(x\right)=2x^2+8\ge8>0\forall x\)
Do đó đa thức trên không có nghiệm.
2. a) \(A=7x^2-4x-3\)
\(=7x^2-7x+4x-3\)
\(=\left(7x^2-7x\right)+\left(3x-3\right)\)
\(=7x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(7x+3\right)\)
Cho A = 0 \(\Rightarrow\orbr{\begin{cases}x-1=0\\7x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-3}{7}\end{cases}}}\)
Vậy .........
b) \(B=5x^2-3x-8\)
\(=5x^2+5x-8x-8\)
\(=\left(5x^2+5x\right)-\left(8x+8\right)\)
\(=5x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(5x-8\right)\)
Cho B = 0 \(\Rightarrow\orbr{\begin{cases}x+1=0\\5x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{8}{5}\end{cases}}}\)
Vậy ..........
a) A(x)+B(x)=(x^3+3x^2-4x-12)+(-2x^3+3x^2+4x+1)
=x^3+3x^2-4x-12-2x^3+3x^2+4x+1
=(x^3-2x^3)+(3x^2+3x^2)-(4x-4x)-(12-1)
=-x^3+6x^2-11
b) A(x)-B(x)=(x^3+3x^2-4x-12)-(-2x^3+3x^2+4x+1)
=x^3+3x^2-4x-12+2x^3-3x^2-4x-1
=(x^3+2x^3)+(3x^2-3x^2)-(4x+4x)-(12+1)
=3x^3-8x-13
c) Thay x=2 vào 2 đa thức A(x) và B(x) ta có
A(2)=2^3+3*2^2-4*2-12
=8+12-8-12
=0
B(2)=-2*2^3+3*2^2+4*2-1
=-16+(-4)+8-1
=-13
Vậy x=2 là nghiệm của đa thức A(x) và không là nghiệm của đa thức B(x)
\(g\left(x\right)=x^3-2x^2+x\)
\(x^3-2x^2+x=x\left(x^2-2x+1\right)\)
\(\Rightarrow x\left(x^2+2x+1\right)=x\left(x-1\right)^2\)
\(g\left(x\right)=0\)
Tập nghiệm của g(x) là { 0 ; 1 }
a/ Đặt f (x) = \(\left(4x-8\right)\left(\frac{1}{2}-x\right)\)
Khi f (x) = 0
=> \(\left(4x-8\right)\left(\frac{1}{2}-x\right)=0\)
=> \(\orbr{\begin{cases}4x-8=0\\\frac{1}{2}-x=0\end{cases}}\)=> \(\orbr{\begin{cases}4x=8\\x=\frac{1}{2}\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
Vậy f (x) có 2 nghiệm là: x1 = 2; x2 = \(\frac{1}{2}\)
b/ Đặt \(g\left(x\right)=2x^2-18\)
Khi g (x) = 0
=> \(2x^2-18=0\)
=> \(2x^2=18\)
=> \(x^2=9\)
=> \(x=\pm\sqrt{9}\)
Vậy đa thức có 2 nghiệm: x1 = \(\sqrt{9}\); x2 = \(-\sqrt{9}\)
4x^6 -1