Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - xy + x2 -y2 =8
=> x(x-y) +(x-y)(x+y) =8
=> (x-y)(2x+y) =8
Vì 2x +y > x -y
=> (x-y)(2x+y) =8 = 1.8 =2.4
+ x -y =1 và 2x +y =8 => x =3 ; y =2
+ x -y =2 và 2x +y =4 => x =2 ; y =0
Vậy (x;y) = ( 3;2) ; (2;0)
Để Phương trình có nghiệm nguyên thì \(\Delta=\left(-y\right)^2-4.1.\left(y^2-4\right)\ge0\Leftrightarrow-3y^2+16\ge0\)
\(\Leftrightarrow y^2\le\frac{16}{3}\)\(\Leftrightarrow\sqrt{\frac{-16}{3}}\le y\le\sqrt{\frac{16}{3}}\Leftrightarrow-2\le y\le2\)( vì y nguyên )
từ đó tìm được y,x
x2 - xy + y2 - 4 = 0
Xét phương trình theo nghiệm x. Ta có
Để pt có nghiệm thì ∆\(\ge0\)
<=> y2 - 4(y2 - 4) \(\ge0\)
<=> \(y^2\le\frac{16}{3}\Leftrightarrow-2\le y\le2\)
Thế vào sẽ tìm được x, y nhé
<=>x^2-y^2+x^2-xy=8
<=>(x-y)(2x+y)=8
2x+y>x-y
tự xét tiếp
lớp 9 kém thế