Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau đó lạ giải phương trình bậc hai.m có nghiệm khi denta lớn hơn 0
pt <=> (x2 - 2x + 1) - m|x - 1| + m2 - 1 = 0
<=> (x - 1)2 - m|x - 1| + m2 - 1 = 0
Đặt t = |x - 1| (t \(\ge\) 0). pt trở thành:
t2 - mt + m2 - 1 = 0 (*)
Để pt đã cho có nghiệm <=> (*) có ít nhất 1 nghiệm không âm
<=> \(\Delta\) \(\ge\) 0 và 2 nghiệm x1; x2 trái dấu hoặc x1; x2 cùng không âm
+) \(\Delta\) = (-m)2 - 4(m2 - 1) = 4 - 3m2 \(\ge\) 0 <=> m2 \(\le\) \(\frac{4}{3}\) <=> |m| \(\le\) \(\frac{2}{\sqrt{3}}\) <=> -\(\frac{2}{\sqrt{3}}\) \(\le\) m \(\le\) \(\frac{2}{\sqrt{3}}\) (1)
+) Theo hệ thức Vi - ét ta có: x1 + x2 = m; x1x2 = m2 - 1
* x1; x2 trái dấu <=> x1x2 < 0 <=> m2 - 1 < 0 <=> m2 < 1 <=> |m| < 1 <=> -1 < m < 1 (2)
* x1; x2 cùng không âm <=> x1 + x2 = m \(\ge\) 0 ; x1x2 = m2 - 1 \(\ge\) 0
<=> m \(\ge\) 0 và |m| \(\ge\) 1 <=> m \(\ge\) 1 (3)
Kết hợp (1)(2)(3) => Với -1 < m \(\le\) \(\frac{2}{\sqrt{3}}\) thì pt đã cho có nghiệm
thế x1vào bt =>\(2\times3^2-\left(m+3\right)\times3+m-1=0\Leftrightarrow18-3m-9+m-1=0\)
<=>8 - 2m=0 <=>m=4
thế 4 vào bt 2x2 - (m + 3)x + m - 1 = 0 <=>2x2-7x+3=0 <=>\(\left(x-3\right)\left(2x-1\right)=0\Leftrightarrow x=3\)hoặc x=0.5 thỏa mãn
b tương tự
1: =>x+1=5
=>x=4
2: \(\Leftrightarrow\left|x-5\right|=2x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+2-x+5\right)\left(2x+2+x-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+7\right)\left(3x-3\right)=0\end{matrix}\right.\Leftrightarrow x=1\)
3: \(\Leftrightarrow\sqrt{3+x}\left(\sqrt{3-x}+1\right)=0\)
=>x+3=0
=>x=-3