Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NHÂN VỚI 4 TA CÓ
\(\Leftrightarrow12x^2-8xy+4y-20x+8=0\)0
\(\Leftrightarrow\left(12x^2-20x+6\right)-4y\left(2x-1\right)-\left(2x-1\right)+1=0\)
\(\Leftrightarrow2\left(2x-1\right)\left(3x-3\right)-4y\left(2x-1\right)-\left(2x-x\right)+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(6x-4y-7\right)=-1\)
ĐẾN ĐAY BẠN TỰ GIẢI
học lớp 6 thôi,sai thôi nhé
Ta có (1-2x)y=-32+5x-2
Do x nguyên nên 1-2x khác 0
=>y=\(\frac{3x^2-5x+2}{2x-1}\)<=>4y=\(\frac{12x^2-20x+8}{2x-1}\)=6x-7+\(\frac{1}{2x-1}\)
Do x,y là số nguyên =>\(\frac{1}{2x-1}\)là số nguyên,nên 2x-1 thuộc (1;-1).Từ đó tìm đc (x;y) là (1;0),(0;-2)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
\(\Delta\)không thì dùng cách này cho dễ
\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)
\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)
\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)
\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )
+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )
+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )
+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)
Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }
PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)
Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)
\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)
\(\Leftrightarrow-1\le y\le2\)
Thế vô làm tiếp :v