Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: \(x,y\in\mathbb{Z}^+\)
PT tương đương: \((x-y)(4xy-2)=(xy)^3-1\geq 0\Rightarrow x\geq y\)
Nếu $x=y$ thì hiển nhiên có $xy=1\Rightarrow x=y=1$.
Xét $x>y$ có \(4xy(x-y)-2(x-y)+1=(xy)^3\vdots xy\Rightarrow 2(x-y)-1\vdots xy\)$(1)$
Vì $2(x-y)-1\neq0$ nên suy ra để có $(1)$ thì \(2(x-y)-1\geq xy\Leftrightarrow (y-2)(x+2)\leq -5<0\)
\(\Rightarrow y-2<0\rightarrow y=1\). Thay vào PT ban đầu thu được $x=y=1$ (loại vì đang xét $x>y$)
TH2: $x,y$ đều âm. Ta thay $x=-a,y=-b$ với $a,b$ nguyên dương.
Phương trình trở thành $2a(2b^2+1)-2b(2a^2+1)+1=(ab)^3$
Đây là dạng PT tương tự TH1, ta cũng thu được $a=b=1$, tức là $x=y=-1$
TH3: $x>0,y<0$. Đặt $x=a,y=-b$ ($a,b$ nguyên dương)
PT tương đương: $2b(2a^2+1)+2a(2b^2+1)-1=(ab)^3$
\(\Rightarrow 2(a+b)-1\vdots ab\). Vì $2(a+b)-1\neq 0$ nên \(2(a+b)-1\geq ab\Rightarrow (a-2)(b-2)\leq 3\)
Với $a,b\geq 1$ dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: $x<0,y>0$. Đặt $x=-a,y=b$ ($a,b$ nguyên dương)
PT tương đương $2a(2b^2+1)+2b(2a^2+1)+1+(ab)^3=0$ (vô lý)
Vậy $(x,y)=(1;1)$ hoặc $(x,y)=(-1;-1)$
2x2 + y2 + 3xy + 3x + 2y + 2 = 0
<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0
<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0
<=> (3x + 2y + 2)2 - x2 = -4
<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4
<=> (2x + 2y + 2)(4x + 2y + 2) = -4
<=> (x + y + 1)(2x + y + 1) = -1
Xét các TH xảy ra <=>
\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)
\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)
(tự tính)
Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)
\(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)
Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :
\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)
Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ
Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)
Ta luôn có \(x+k>x-k\) với \(k>0\)
Xét các trường hợp với \(x-k\)và \(x+k\)là các số nguyên được
\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)
Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)
Học tốt