Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)
* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)
\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)
\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)
\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)
\(\Rightarrow x=6\)hoặc \(x=0\)
Có các nghiệm \(\left(x=6;y=1;z=0\right)\) \(\left(x=6;y=-1;z=0\right)\)
\(\left(x=0;y=1;z=0\right)\) \(\left(x=0;y=-1;z=0\right)\)
\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)
* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)
\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)
\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)
\(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)
\(z^2>9\Rightarrow z^2\ge6^2=36\)
Ta có \(3\left(x-3\right)^2+2z^2>33\)(loại)
Nghiệm nguyên của ptrình là:
\(\left(x=6;y=1;z=0\right)\) \(\left(x=6;y=-1;z=0\right)\)
\(\left(x=0;y=1;z=0\right)\) \(\left(x=0;y=-1;z=0\right)\)