\(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}=3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Áp dụng bđt Cô-si:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{y}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{y}}\)

=>\(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{y}\ge4>3\)

Vậy pt vô nghiệm

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.

11 tháng 11 2016

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

11 tháng 11 2016

vậy nghiệm nguyên dương của PT là bao nhêu

30 tháng 4 2018

Áp dụng BĐT \(\frac{a}{b+c}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\forall a;b;c>0\) ta có :

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự ta cũng có : \(\hept{\begin{cases}\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{x+y}\right)\\\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{z+y}\right)\end{cases}}\)

Cộng các vế tương ứng của các BĐT vừa CM đc ta có :

\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{x+z}{x+z}\right)=\frac{3}{4}\)

Hay \(VT\le VP\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z\in Z^+\)

12 tháng 9 2020

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

6 tháng 9 2018

TH1 : \(x+y+z+t=0\)

    => \(x+y=-\left(z+t\right)\)

         \(y+z=-\left(x+t\right)\)

         \(z+t=-\left(x+y\right)\)

        \(x+t=-\left(y+z\right)\)

\(\Rightarrow\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}=-1\)

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-4\)

TH2 : \(x+y+z+t\ne0\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=3\)( do \(x+y+z+t\ne0\))

\(\Rightarrow x=3\left(y+z+t\right)\)

     \(y=3\left(z+t+x\right)\)

     \(z=3\left(t+x+y\right)\)

     \(t=3\left(x+y+z\right)\)

\(\Rightarrow\)\(4x=3\left(x+y+z+t\right)\)

         \(4y=3\left(x+y+z+t\right)\)

         \(4z=3\left(x+y+z+t\right)\)

         \(4t=3\left(x+y+z+t\right)\)

\(\Rightarrow\)\(4x=4y=4z=4t\)

\(\Rightarrow\)\(x=y=z=t\)

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)\(=1+1+1+1\)\(=4\)

Vậy trong cả 2 trường hợp  P đều có giá trị nguyên

30 tháng 11 2018

Bài trên đúng rồi đó các bạn cho bn ý

Mà đây là Toán 7 thì đúng hơn 

7 tháng 1 2017

x < y < z => 1/x > 1/y > 1/z

=> 3/x > 1/x + 1/y + 1/z

=> 3/x > 1/3 = 3/9

=> x < 9 (1)

Có: 1/x < 1/3 do 1/x + 1/y + 1/z = 1/3

=> x > 3 (2)

Từ (1) và (2) do x nguyên dương lẻ => x = 5 hoặc x = 7

+ Với x = 5 => 1/y + 1/z = 1/3 - 1/5 = 2/15

Có: 2/y > 1/y + 1/z

=> 2/y > 2/15

=> y < 15 (3)

Có: 2/y < 2.2/15 do 1/y + 1/z = 2/15

=> 4/2y < 4/15 => 2y > 15 => y > 15/2 (4)

Từ (3) và (4), do y nguyên dương lẻ nê y = 9 hoặc y = 11 hoặc y = 13

Giá trị tương ứng của z là: 45; 165/7; 195/11

Dễ thấy z = 45 thỏa mãn x < y < z và z nguyên dương lẻ

+ Với x = 7 => 1/y + 1/z = 1/3 - 1/7 = 4/21

Có: 2/y > 1/y + 1/z

=> 4/y > 4/21

=> y < 21 (5)

Lại có: 1/y < 4/21 do 1/y + 1/z = 4/21

=> 4/4y < 4/21 => 4y > 21 => y > 21/4 (6)

Từ (5) và (6) do y nguyên dương lẻ => y thuộc {7;9;11;13;15;17;19}

Thử từng giá trị của y ta đều thấy vô lý

Vậy x = 5; y = 9; z = 45

9 tháng 1 2017

ths nhìu nhìu cho mik hỏi xíu tại sao 2/y>1/y+1/z vậy?

14 tháng 3 2018

Ta có: \(A=\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)

\(A>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1>\frac{9}{10}\)

\(A< \frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}+\frac{t+z}{x+y+z+t}=2< \frac{9}{4}\)

Vậy: \(\frac{9}{10}< A< \frac{9}{4}\)

14 tháng 3 2018

bạn girl làm đúng rồi , giống ý tưởng của mình là đánh giá dãy trên nhỏ hơn 1 và lớn hơn 2

Nhưng bạn nên đánh giá rõ từng phân số nhé , không nên làm tắt như bài của bạn ấy :)

Ta có:\(A=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)

\(\Rightarrow A+4=\left(\frac{x-t}{t+y}+1\right)+\left(\frac{t-y}{y+z}+1\right)+\left(\frac{y-z}{z+x}+1\right)+\left(\frac{z-x}{x+t}+1\right)\)

\(=\frac{x+y}{t+y}+\frac{t+z}{y+z}+\frac{x+y}{z+x}+\frac{z+t}{x+t}=\left(x+y\right)\left(\frac{1}{t+y}+\frac{1}{z+x}\right)+\left(t+z\right)\left(\frac{1}{y+z}+\frac{1}{x+t}\right)\)

Do x,y,z,t là các số dương nên áp dụng bất đẳng thức cô-si,ta có:

\(\Rightarrow A+4\ge\frac{4\left(x+y\right)}{x+y+z+t}+\frac{4\left(z+t\right)}{x+y+z+t}=4\Rightarrow A\ge0\left(ĐPCM\right)\)

Dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y\\z=t\end{cases}}\)

18 tháng 4 2017

Số nào + lại chả được 1 số thuộc Z nhỉ

Đúng 100%

Đúng 100%

Đúng 100%

18 tháng 4 2017

Bằng z chứ không phải thuộc z bạn ơi ;-;