Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{5}=60\end{cases}}\)
<=> \(\hept{\begin{cases}x+y+z=100\\25x+15y+z=300\end{cases}}\)
Trừu vế dưới vơi vế trên:
\(24x+14y=200\)
<=> \(12x+7y=100\)
Có : \(12x⋮4,100⋮4\Rightarrow7y⋮4\Rightarrow y⋮4\)
Đặt: y = 4k, k nguyên dương
Có: \(12x+28k=100\)
<=> \(3x+7k=25\)Vì x, k nguyên dương
Chọn k = 1 => x = 6 TM. Vậy y = 4, x =6, z =90
Chọn k = 2 => x =11/3 loại
Chọn k= 3 => x =4/3 loại
Chọn \(k\ge4\)=> \(25=3x+28>28\) vô lí.
Vậy x = 6; y= 4, z = 90.
Tìm nghiệm nguyên dương của hệ phương trình sau
\({x +y+z \over 2}=50 \) và \(5x+3y+{z \over 3}=100\)
\(\left\{{}\begin{matrix}x+y+z=100\\15x+9y+z=300\end{matrix}\right.\) \(\Rightarrow14x+8y=200\Rightarrow x=\dfrac{100-4y}{7}\)
Do x, y, z nguyên dương \(\Rightarrow100-4y\) là bội của 7, mà \(100-4y< 100\) và luôn chia hết cho 4 với mọi y nguyên dương \(\Rightarrow100-4y\) là các bội chung nhỏ hơn 100 của 4 và 7 \(=\left\{28;56;84\right\}\)
\(100-4y=28\Rightarrow y=18\Rightarrow x=4\Rightarrow z=78\)
\(100-4y=56\Rightarrow y=11\Rightarrow x=8\Rightarrow z=81\)
\(100-4y=84\Rightarrow y=4\Rightarrow x=12\Rightarrow z=84\)
Vậy phương trình có 3 bộ nghiệm x, y, z thỏa mãn:
\(\left(x;y;z\right)=\left(4;18;78\right)\) ;\(\left(8;11;81\right)\) ;\(\left(12;4;84\right)\)
X+Y+Z = 100
5X+3Y+1/3Z = 100 (1)
X+Y+Z+5X+3Y+1/3Z = 0
2/3Z = 4X+2Y
Z = 6X+3Y đưa vào (1)
5X+3Y +1/3 (6X+3Y) = 100
7X +4Y = 100
4Y = 100 – 7X Vì Y là số nguyên dương => 100 -7X phải chia chẵn cho 4.
100 chia chẵn cho 4 => 7X phải chia chẵn cho 4.
7 không chia chẵn cho 4, vậy X phải là số nguyên dương và chia chẵn cho 4.
Nếu:
X = 0 => Y = 25; Z = 75
X = 4 => Y = 18; Z = 78
X = 8 => Y = 11; Z = 81
X = 12 => Y = 4; Z = 84
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{y-x}{xy}=\frac{1}{3}\Leftrightarrow3y-3x=xy\Leftrightarrow3x+xy-3y=0\Leftrightarrow x\left(y+3\right)-3\left(y+3\right)=-9\Leftrightarrow\left(x-3\right)\left(y+3\right)=-9\)
Vì x,y nguyên nên x - 3 và y + 3 là ước của -9. Ta có bảng:
x-3 | -9 | -3 | -1 | 1 | 3 | 9 |
y+3 | 1 | 3 | 9 | -9 | -3 | -1 |
x | -6 (loại) | 0 (loại) | 2 (TM) | 4 (TM) | 6 (TM) | 12 (TM) |
y | -2 (loại) | 0 (loại) | 6 (TM) | -12 (loại) | -6 (loại) | -4 (loại) |
Vậy nghiệm nguyên dương của phương trình là (x;y) = (2;6).