Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)
Nếu \(z\ge3\) thì \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{16}{xyz}< \dfrac{1}{3}+\dfrac{16}{27}< 2\). Suy ra z=1 hoặc z=2
❄z=1. Phương trình trở thành \(2xy=x+y+17\Leftrightarrow4xy-2x-2y-34=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=35=35.1=7.5\) ( do x>y)
suy ra (x,y)=(18,1) hoặc (4,3). Ta thu được (x,y,z)=(18,1,1) hoặc (4,3,1) cùng các hoán vị tương ứng vì vai trò 3 biến như nhau
❄z=2. Có lẽ tương tự [?:v)
\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)
\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)
Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)
\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)
Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.
Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1
Vì x3 +y3 +z3 =495 < 83 =>1 \(\le x,y,z\le7\)
Áp dụng đẳng thức x3+y3+z3 + 3xyz = (x+y+z)(x2+y2+z2-xy-yz-xz)
=>x3+y3+z3 = (x+y+z)(x2+y2+z2-xy-yz-xz) - 3xyz
<=> 495 = 15 (x2+y2+z2-xy-yz-xz) - 3xyz
<=> 165 = 5(x2+y2+z2-xy-yz-xz) - xyz
=>xyz chia hết cho 5 , vì \(\le x,y,z\le7\) và x,y,z có vai trò như nhau , ta giả sử x= 5 . Thay vào phương trình , ta suy ra
yz=21 và y+z=10 =>y=3 , z=7 hoặc z=3 , y=7 , do vai trò của x,y,z như nhau nên a tìm được (x,y,z) = (5,3,7) và các hoán vị
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{y-x}{xy}=\frac{1}{3}\Leftrightarrow3y-3x=xy\Leftrightarrow3x+xy-3y=0\Leftrightarrow x\left(y+3\right)-3\left(y+3\right)=-9\Leftrightarrow\left(x-3\right)\left(y+3\right)=-9\)
Vì x,y nguyên nên x - 3 và y + 3 là ước của -9. Ta có bảng:
x-3 | -9 | -3 | -1 | 1 | 3 | 9 |
y+3 | 1 | 3 | 9 | -9 | -3 | -1 |
x | -6 (loại) | 0 (loại) | 2 (TM) | 4 (TM) | 6 (TM) | 12 (TM) |
y | -2 (loại) | 0 (loại) | 6 (TM) | -12 (loại) | -6 (loại) | -4 (loại) |
Vậy nghiệm nguyên dương của phương trình là (x;y) = (2;6).
\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)
Ta có VP là số nguyên nên VT cũng phải là số nguyên
Giả sử \(yz=a^2\) thì VT không phải số nguyên
Nên yz không phải số chính phương.
Nên để VT là số nguyên thì chỉ có thể là O
\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)
\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương
Vậy PT vô nghiệm
Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)
\(\Rightarrow15=x+y+z\ge3z\)
\(\Leftrightarrow0< z\le5\)
Với \(z=1\) thì ta có
\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm
Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.