Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(y^2=-2\left(x^6-x^3y-32\right)\Leftrightarrow2x^6-2x^3y+y^2=64\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
# Chứng minh và áp dụng bất đẳng thức sau \(A^2+B^2\ge\frac{\left(A+B\right)^2}{2}\), ta có
\(\left(2x^3-y\right)^2+y^2\ge\frac{\left(2x^3-y+y\right)^2}{2}=2x^6\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\Leftrightarrow-2\le x\le2\)
Mà x nguyên (gt) nên x có các giá trị sau -2;-1;0;1;2
Thế các giá trị của x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y)
c) \(x^2-x-6=-y^2\Leftrightarrow\left(x-3\right)\left(x+2\right)=-y^2\)
mà \(y^2\ge0\Leftrightarrow-y^2\le0\)nên \(\left(x-3\right)\left(x+2\right)\le0\Leftrightarrow\hept{\begin{cases}x-3\le0\\x+2\ge0\end{cases}}\)( do x-3 < x+2 )
\(\Leftrightarrow-2\le x\le3\)
mà x nguyên (gt) nên \(x\in\left\{-2;-1;0;1;2;3\right\}\)
Thế các giá trị x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y )
HD
giải hệ phương trình nghiệm nguyên: (k-3)(3+k)=2x
=> k=..
x=...
y=+-3k-x
x2+(x+y)2=(x+9)2
x+x+y=x+9
2x+y=x+9
2x+y-x-9=0
x+y+9=0
xong het pt
Trả lời
Giải phương trình nghiệm nguyên dương
y(y+1)2+x(x+1)2=8xyy(y+1)2+x(x+1)2=8xy
Do x,y>0x,y>0 nên ta có
(y+1)2x+(x+1)2y=8(y+1)2x+(x+1)2y=8
Mặt khác ta có
(y+1)2x+(x+1)2y≥2(x+1)(y+1)√xy≥2.2√x.2√y√xy=8(y+1)2x+(x+1)2y≥2(x+1)(y+1)xy≥2.2x.2yxy=8
Vậy PT đã cho có nghiệm duy nhất x=y=1x=y=1
x2+x+13=y2<=>4(x2+x+13)=4y2<=>4x2+4x+52=4y2<=>(4x2+4x+1)+51=4y2
<=>(2x+1)2+51=(2y)2<=>(2y)2-(2x+1)2=51<=>(2y-2x-1)(2y+2x+1)=51
đến đây giải kiểu pt ước số