\(xy-x-y=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Ta có xy-x-y=2

<=> xy-x-y+1=3

<=> x(y-1)-(y-1)=3

<=> (y-1)(x-1)=3

Do x,y là sô nguyên nên x-1 và y-1 là ước của 3. 

Đến đây bạn lập bảng xét ước là ra

21 tháng 2 2018

Ta có:

\(x+xy+y=9\) 

\(x\left(y+1\right)+y=9\) 

\(x.\left(y+1\right)+\left(y+1\right)=10\) 

\(\left(x+1\right).\left(y+1\right)=10\)  

Xét \(x+1;y+1\in U\left(10\right)\)

Tự làm tiếp

21 tháng 2 2018

\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=10\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=10\)

từ đây bn lập bảng ước là xong

21 tháng 2 2018

pt <=> (x+xy)+(y+1) = 9 + 1

<=> x.(y+1)+(y+1) = 10

<=> (y+1).(x+1) = 10

Đến đó bạn dùng quan hệ ước bội mà giải nha

Tk mk nha

21 tháng 2 2018

Ta có : 

\(x+xy+y=9\)

\(\Leftrightarrow\)\(x\left(y+1\right)+\left(y+1\right)=10\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=10\)

Đến đây bạn lập bảng xét từng trường hợp ra chúc bạn học tốt :') 

31 tháng 1 2019

dễ

x2 + y2 + xy = x2y2

x2 + xy + y2 - x2y2 = 0

4x2 + 4xy + 4y2 - 4x2y2 = 0

( 4x2 + 8xy + 4y2 ) - ( 4x2y2 + 8xy + 1 ) = -1       ( thêm - 1 )

( 2x + 2y )2 - ( 2xy + 1 )2 = -1

( 2x + 2y - 2xy - 1 ) ( 2x + 2y + 2xy + 1 ) = -1

\(\Rightarrow\)\(\hept{\begin{cases}2x+2y-2xy-1=1\\2x+2y+2xy+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y-2xy-1=-1\\2x+2y+2xy+1=1\end{cases}}\)

suy ra tìm đc ( x; y ) \(\in\){ ( 0 ; 0 ) ; ( -1 ; 1 ) ; ( 1 ; -1 ) }

SKT-STT giúp mk bài tập này vs 

Tìm các số nguyên x dể bt \(A=\frac{x^5+1}{x^3+1}\)   có giá trị là số nguyên

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

21 tháng 8 2020

Từ PT \(\Leftrightarrow x^2-2xy+y^2+x^2+y^2=6\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+y^2=6\)

\(\Rightarrow x^2< 6\Leftrightarrow x^2\in\left\{1,4\right\}\Leftrightarrow x\in\left\{1;-1;2;-2\right\}\)

Với \(x=1\)thì \(1-y+y^2=3\Leftrightarrow y^2-y=2\Leftrightarrow y\left(y-1\right)=2\Leftrightarrow\orbr{\begin{cases}y=2\\y=-1\end{cases}}\)

Với \(x=-1\) thì \(1+y+y^2=3\Leftrightarrow y\left(y+1\right)=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

Với \(x=2\) thì \(4-2y+y^2=3\Leftrightarrow y^2-2y+1=0\Leftrightarrow\left(y-1\right)^2=0\Leftrightarrow y=1\)

Với \(x=-2\) thì \(4+2y+y^2=3\Rightarrow y^2+2y+1=0\Leftrightarrow\left(y+1\right)^2=0\Leftrightarrow y=-1\)

Vậy các cặp số nguyên x,y thỏa mãn \(x^2-xy+y^2=3\) là \(\left(x,y\right)=\left\{\left(1,2\right);\left(1,-1\right);\left(-1,1\right);\left(-1,-2\right);\left(2,1\right);\left(-2,-1\right)\right\}\)