K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

\(\Leftrightarrow x^2y^2\left(x+y\right)+x+y=xy+2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)

\(\Rightarrow xy+2⋮x^2y^2+1\)

\(\Rightarrow\left(xy-2\right)\left(xy+2\right)⋮x^2y^2+1\)

\(\Rightarrow x^2y^2-4⋮x^2y^2+1\)

\(\Rightarrow5⋮x^2y^2+1\)

\(\Rightarrow\left[{}\begin{matrix}x^2y^2=4\\x^2y^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}xy=2\\xy=-2\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\end{matrix}\right.\)

Xét \(xy=2\)\(\Rightarrow\)\(5\left(x+y\right)=6\)(pt vô nghiệm nguyên)

Xét xy=-2\(\Rightarrow5\left(x+y\right)=0\)

\(\Rightarrow x=-y\)

\(\Rightarrow y^2=2\)(pt vô nghiệm nguyên)

Xét x=0\(\Rightarrow y=2\)

Xét y=0\(\Rightarrow x=2\)

Thử lại ta thấy cặp số (x;y)=(0;2);(2;0) thỏa mãn

Vậy ...

10 tháng 11 2019

Hjhj mình vừa giải trên F

28 tháng 10 2019

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

28 tháng 10 2019

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

3 tháng 11 2019

Ta có: \(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Tương tự các BĐT còn lại rồi nhân theo vế thu được:

\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}.\frac{zx}{\left(z+1\right)\left(x+1\right)}.\frac{xy}{\left(x+1\right)\left(z+1\right)}}\)

\(\Rightarrow P=xyz\le\frac{1}{8}\)

Đẳng thức xảy ra khi x = y = z = 1/2

Vậy...

\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)

\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)

Đến đây thì đơn giản rồi nhé :)))

9 tháng 2 2020

Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)

\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)

\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)

\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)

\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)

  • \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
  • \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
  • \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)