Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của cherry moon - Toán lớp 9 - Học toán với OnlineMath
Có: \(6x^2y^3+3x^2-10y^3=-2\)
<=> \(3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)+5=-2\)
<=> \(\left(2y^3+1\right)\left(3x^2-5\right)=-7\)
Th1: \(\hept{\begin{cases}2y^3+1=-7\\3x^2-5=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-4\\x^2=2\end{cases}\left(loai\right)}\)
Th2: \(\hept{\begin{cases}2y^3+1=-1\\3x^2-5=7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-1\\x^2=4\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=\pm2\end{cases}}\)
Th3: \(\hept{\begin{cases}2y^3+1=1\\3x^2-5=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=0\\x^2=-\frac{2}{3}\end{cases}\left(loai\right)}\)
Th4: \(\hept{\begin{cases}2y^3+1=7\\3x^2-5=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=3\\x^2=\frac{4}{3}\end{cases}\left(loai\right)}\)
Vậy phương trình có nghiệm: ( -2;-1) và ( 2; -1)
\(6x^2y^4+3x^2-10y^3=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)
\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)
\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)
6x2y3 +3x2 - 10y3 = -2
\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x2 \(-\) 2) + 3x2 \(-\) 2= -4
\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)
Vì x2 \(\ge\)0 nên 3x2 -2 \(\ge\)-2
Ta có các trường hợp:
TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)
Vậy .....
Ta có:
x2 + 2y2 + 3xy + 3x + 5y = 15
<=> x2 + 2y2 + 3xy + 3x + 5y + 2 = 17
<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17
<=> (x + y + 2)(x + 2y + 1) = 17
=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)
Giải ra là tìm được x,y nhé
Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)
\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)
Nhận thấy pt trên là phương trình bậc hai ẩn y . Do đó ta xét
\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)
Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)
Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0
Xét các trường hợp với x-k và x+k là các số nguyên được
\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)
Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)
Lời giải:
Ta có:
$6x^2y^3+3x^2-10y^3=-2$
$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$
$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$
Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.
Đến đây ta xét các TH:
TH1: $2y^3+1=-1; 3x^2-5=7$
TH2: $2y^3+1=1; 3x^2-5=-7$
TH3: $2y^3+1=-7; 3x^2-5=1$
TH4: $2y^3+1=7; 3x^2-5=-1$
Giải lần lượt các TH ta được $x=\pm 2; y=-1$