\(2x^2+y^2+3xy+3x+2y+2=0\) 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

24 tháng 3 2018

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

25 tháng 12 2016

\(x^2+2y^2+3xy-2x-4y+3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)

25 tháng 12 2016

đề đúg hay sai vậy

 

4 tháng 2 2017

Ta có:  

x+ 2y+ 3xy + 3x + 5y = 15

<=> x+ 2y+ 3xy + 3x + 5y + 2 = 17

<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17

<=> (x + y + 2)(x + 2y + 1) = 17

=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)

Giải ra là tìm được x,y nhé

25 tháng 8 2019

VeryVery good.Thanks. I will give 1  for you.Love

10 tháng 9 2016

2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 
{x + y + 4 = -1 
{2x + y + 1 = 1 
=> x = 2 và y = - 4 

{x + y + 4 = 1 
{2x + y + 1 = - 1 
=> x = - 2 và y = 2 

Chọn được 2 cặp x;y

20 tháng 11 2018

bài này mà lớp 9 á

20 tháng 12 2018

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 16x2 + 8y2 + 24xy + 24x + 16y + 16 = 0

<=> (4x)2 + 24x(y+1) + 8y2 + 16y + 16 = 0

<=> (4x)2 + 24x(y+1) + [3(y + 1)]2 - [3(y + 1)]2 + 8y2 + 16y + 16 = 0

<=> (4x + 3y + 3)2 - 9y2 - 18y - 9 + 8y2 + 16y + 16 = 0

<=> (4x + 3y + 3)2 - y2 - 2y - 1 + 8 = 0

<=> (4x + 3y + 3)2 - (y + 1)2 = - 8

<=> (y + 1)2 - (4x + 3y + 3)2 = 8

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8

<=> (x + y + 4)( 2x + y + 1) = -1

<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y+4=-1\\2x+y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+y+4=1\\2x+y+1=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\)

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)