Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0 (1)
Coi (1) là phương trình bậc 2 ẩn x
\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8
Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương
<=> y2 + 4y - 8 = k2 (k nguyên)
<=> y2 + 4y + 4 - k2 = 12
<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12
=> (y + 2 + k) \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}
y+2+k | 12 | -12 | 1 | -1 | 3 | -3 | 4 | -4 | 2 | -2 | 6 | -6 |
y+2-k | 1 | -1 | 12 | -12 | 4 | -4 | 3 | -3 | 6 | -6 | 2 | -2 |
k | 13/2 (L) | -11/2 (L) | -11/2 (L) | 11/2(L) | -1/2(L) | 1/2(L) | 1/2(L) | -1/2(L) | -2 | 2 | 2 | -2 |
y | 2 | -6 | 2 | -6 |
Vậy y = -6 hoặc y = 2
Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9
Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3
Vậy ...
\(x^2+2y^2+3xy-x-y+3=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)
Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)
\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)
Nhận thấy pt trên là phương trình bậc hai ẩn y . Do đó ta xét
\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)
Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)
Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0
Xét các trường hợp với x-k và x+k là các số nguyên được
\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)
Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)
Ta có:
x2 + 2y2 + 3xy + 3x + 5y = 15
<=> x2 + 2y2 + 3xy + 3x + 5y + 2 = 17
<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17
<=> (x + y + 2)(x + 2y + 1) = 17
=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)
Giải ra là tìm được x,y nhé
\(x^2+xy+2xy+2y^2+2x+2y+4=0\)
\(\Leftrightarrow x\left(x+y\right)+2y\left(x+y\right)+2x+2y+4=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+2\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+2\right)=-4\)
Đến đây tự làm nha
ta có pt
<=>\(x^2+xy+2y^2+2xy-\left(x+y\right)+3=0\)
<=>\(x\left(x+y\right)+2y\left(x+y\right)-\left(x+y\right)=-3\)
<=>\(\left(x+y\right)\left(x+2y-1\right)=-3\)
đến đây thì xét nghiệm nguyên của 3 và tự giải nhé !
^_^
\(x^2+2y^2+3xy-2x-4y+3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)
đề đúg hay sai vậy