Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2x2+3y2+4x=19 ⇔ 2x2+4x=19−3y2 ⇔ 2x2+4x+2=21−3y2 ⇔ 2(x+1)2=3(7−y2) (*)
Vì 2(x+1)2 chia hết cho 2 nên 3(7−y2) chia hết cho 2,
hay 7−y2 chia hết cho 2 ,
hay y2 lẻ (1)
Lại có: 7−y2≥0 (do (x+1)2≥0) nên y2≤7 (với y∈Z ), tức là y2∈{1;4} (2)
Từ (1);(2) , suy ra y2=1 ⇒ y∈{−1;1}
Khi đó, phương trình (*) sẽ có dạng 2(x+1)2=18 ⇔ (x+1)2=9 ⇔ x+1=3x+1=−3 ⇔ x=2x=−4
Vậy, các cặp nghiệm nguyên phải tìm: (x;y)={(2;1),(2;−1),(−4;1),(−4;−1)} (thỏa mãn x,y∈Z )
Ta có:
2x2+3y2+4x=19 ⇔ 2x2+4x=19−3y2 ⇔ 2x2+4x+2=21−3y2 ⇔ 2(x+1)2=3(7−y2
) (*)
Vì 2(x+1)2
chia hết cho 2 nên 3(7−y2
) chia hết cho 2,
hay 7−y2
chia hết cho 2 ,
hay y2
lẻ (1)
Lại có: 7−y2≥0 (do (x+1)2≥0) nên y2≤7 (với y∈Z ), tức là y2∈{1;4} (2)
Từ (1);(2) , suy ra y2=1 ⇒ y∈{−1;1}
Khi đó, phương trình (*) sẽ có dạng 2(x+1)2=18 ⇔ (x+1)2=9 ⇔ x+1=3x+1=−3 ⇔ x=2x=−4
Vậy, các cặp nghiệm nguyên phải tìm: (x;y)={(2;1),(2;−1),(−4;1),(−4;−1)} (thỏa mãn x,y∈Z )
:3
tham khảo:
<=> 2x^2+3y^2+4x -19 =0
<=> 2.(x2 + 2x +1) + 3.y2 = 21
<=> 2.(x+1)2 + 3. y2 = 21
Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương
=> (x+1)2 =0 hoặc 9
+) x + 1 = 0 => x = -1 => y 2 = 7 => loại
+) (x+1)2 = 9 => y2 = 1
=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4
y2 = 1 => y = 1 hoặc y = -1
Vậy....
Bạn thông cảm, mình phải sử dụng cách của lớp 9 vậy :))
\(2x^2+8x=67-3y^2\Leftrightarrow2x^2+8x+\left(3y^2-67\right)=0\)\(\left(x,y>0\right)\)
Xét \(\Delta'=16-2.\left(3y^2-67\right)=-6y^2+150\)
Để phương trình có nghiệm thì \(0\le\Delta'\le150\)
\(\Rightarrow0< y\le5\)(Vì x,y nguyên dương)
Do đó ta xét y trong khoảng trên, được :
1. Với y = 1 suy ra phương trình : \(2x^2+8x-64=0\Leftrightarrow x^2+4x-32=0\Rightarrow x=4\)(Nhận ) hoặc \(x=-8\)( Loại)
2. Với y = 2 suy ra phương trình : \(2x^2+8x-55=0\Rightarrow x=\frac{-4+3\sqrt{14}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{14}}{2}\)(Loại)
3. Với y = 3 suy ra phương trình : \(2x^2+8x-40=0\Leftrightarrow x^2+4x-20=0\Rightarrow x=-2+2\sqrt{6}\)(loại) hoặc \(x=-2-2\sqrt{6}\)(Loại)
4. Với y = 4 suy ra phương trình : \(2x^2+8x-19=0\Rightarrow x=\frac{-4+3\sqrt{6}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{6}}{2}\)(Loại)
5. Với y = 5 suy ra phương trình : \(2x^2+8x+8=0\Leftrightarrow x^2+4x+4=0\Rightarrow x=-2\)(Loại)
Vậy kết luận : Tập nghiệm của phương trình là : \(\left(x;y\right)=\left(4;1\right)\)
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
1. Ta có:
\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow a^2-6ab+9b^2+a^2-6a+9+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)
2. Giải:
Ta có: \(2x^2+3y^2+4x=19\)
\(\Leftrightarrow2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\left(1\right)\)
Xét thấy \(VT⋮2\Leftrightarrow3\left(7-y^2\right)⋮2\Leftrightarrow y\) lẻ (2)
Mặt khác \(VT\ge0\Leftrightarrow3\left(7-y^2\right)\ge0\Leftrightarrow y^2\le7\) (3)
Kết hợp (2) và (3) suy ra:
\(y^2=1\) Thay vào \(\left(1\right)\) ta có:
\(2\left(x+1\right)^2=18\). Vậy ta tính được các nghiệm:
\(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;-1\right);\left(-4;1\right)\)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3