\(x+y+z+xy+yz+xz=6\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Ta có: \(\hept{\begin{cases}x+y+z=5\\xy+yz+zx=7\end{cases}}\Rightarrow\hept{\begin{cases}y+z=5-x\\yz=7-x\left(5-x\right)\end{cases}}\)

Lại có: \(\left(y+z\right)^2\ge4yz\)

\(\Rightarrow\left(5-x\right)^2\ge4\left[7-x\left(5-x\right)\right]\)

Lấy vế trái trừ vế phải suy ra \(\left(x-3\right)\left(3x-1\right)\le0\)

Đến đây dễ rồi, tự làm tiếp nha

4 tháng 12 2017

1. Theo tôi nghĩ, chỉ cần x,y,z là ba số nguyên và chúng không đồng thời bằng nhau là được. Sau đây là lời giải. 
Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 
2. 
Từ phương trình 
x + y + z = a + b + c (1) 
ta có 
x^2 + y^2 + z^2 + 2(xy + yz + zx) = a^2 + b^2 + c^2 + 2(ab + bc + ca); 
và vì x^2 + y^2 + z^2 = a^2 + b^2 + c^2 (2) nên 
xy + yz + zx = ab + bc + ca (3). 
Lại vì 
x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) + 3xyz; 
a^3 + b^3 + c^3 = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) + 3abc; 
x^3 + y^3 + z^3 = a^3 + b^3 + c^3 
cùng các giả thiết (1),(2),(3) ta suy ra 
xyz = abc (4). 
Từ đó, hệ đã cho tương đương với 
x + y + z = a + b + c 
xy + yz + zx = ab + bc + ca 
xyz = abc. 
Áp dụng định lí Vi-ét đảo, ta suy ra x,y,z là ba nghiệm của phương trình 
t^3 - (a + b + c)t^2 + (ab + bc + ca)t - abc = 0. 
Phương trình này có các nghiệm là t = a, t = b, t = c. 
Suy ra, nghiệm (x ; y ; z) của hệ đã cho là (a ; b ; c), (a ; c ; b), (b ; a ; c), (b ; c ; a), (c ; b ; a), (c ; a ; b). 
3. 
Gọi A là biểu thức đã cho, phân tích biểu thức đã cho thành tích, ta được 
A = n(n^4 - 5n^2 + 4) 
= n(n^2 - 1)(n^2 - 4) 
= n(n - 1)(n + 1)(n - 2)(n + 2) 
= (n - 2)(n - 1)n(n + 1)(n + 2). 
Vậy là biểu thức đã cho là tích năm số nguyên liên tiếp. 
Vì trong 5 số nguyên liên tiếp có đúng 1 số chia hết cho 5 nên A chia hết cho 5. 
Vì trong 5 số nguyên liên tiếp có ít nhất 1 số chia hết cho 3 nên A chia hết cho 3. 
Vì trong 5 số nguyên liên tiếp có ít nhất 1 số (thứ nhất) chia hết cho 2 và ít nhất 1 số (thứ hai) chia hết cho 4 nên A chia hết cho 8. 
Suy ra A chia hết cho BCNN(5 ; 3 ; 8) và vì BCNN(5 ; 3 ; 8) = 120 nên A chia hết cho 120.

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

14 tháng 5 2018

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng 

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0

31 tháng 10 2019

ủa,\(2\left(xy-yz+zx\right)\) mới đúng chứ nhể ?

\(x^2=\left(y+z\right)^2=y^2+2yz+z^2\Rightarrow2yz=x^2-y^2-z^2\)

\(x=y+z\Rightarrow x-y=z\Rightarrow x^2-2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=2xy\)

\(x=y+z\Rightarrow y=x-z\Rightarrow y^2=x^2-2xz+z^2\Rightarrow x^2+z^2-y^2=2xz\)

Khi đó:

\(2xy-2yz+2zx=x^2+y^2-z^2-x^2+y^2+z^2+x^2+z^2-y^2=x^2+y^2+z^2\) 

=> đpcm

2 tháng 11 2019

Thêm một cách nhé!

\(x=y+z\)

=> \(y+z-x=0\)

=> \(\left(y+z-x\right)^2=0\)

=> \(\left(y+z\right)^2-2x\left(y+z\right)+x^2=0\)

=> \(x^2+y^2+z^2-2xy-2xz+2yz=0\)

=> \(2\left(xy-yz+xz\right)=x^2+y^2+z^2\)

12 tháng 9 2020

Ta có: \(\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow\orbr{\begin{cases}x=y=z\\x+y+z=0\end{cases}}\)

Vì nghiệm của phương trình là bộ ba số khác O nên các số a,b,c là ba số khác nhau và khác O

+) Nếu: \(\frac{a}{b-c}=\frac{b}{c-a}=\frac{c}{a-b}=k\ne0\Rightarrow a=k\left(b-c\right);b=k\left(c-a\right);c=k\left(a-b\right)\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

Từ: \(\frac{a}{b-c}=\frac{b}{c-a}\Rightarrow\frac{a}{b+a+b}=\frac{b}{-a-b-a}\Rightarrow\left(a+b\right)^2+a^2+b^2=0\)

\(\Rightarrow a=b=0\Rightarrow a=b=c=0\)(loại)

+) Nếu: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ba+ca-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{c^2-cb+ab-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\frac{a}{\left(b-c^2\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Đặt \(m=\frac{a}{\left(b-c\right)^2};n=\frac{b}{\left(c-a\right)^2};p=\frac{c}{\left(a-b\right)^2}\Rightarrow m+n+p=0\)

\(\Rightarrow m^3+n^3+p^3=3mnp\Rightarrow\frac{m^2}{np}+\frac{n^2}{mp}+\frac{p^2}{mn}=3\left(ĐPCM\right)\)

20 tháng 2 2017

\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}\)

Ta có: \(\frac{xy+2x+1}{xy+x+y+1}=\frac{\left(xy+x\right)+\left(x+1\right)}{\left(xy+x\right)+\left(y+1\right)}=\frac{x\left(y+1\right)+\left(x+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{x}{x+1}+\frac{1}{y+1}\)

Tương tự ta có:

\(\frac{yz+2y+1}{yz+y+z+1}=\frac{y}{y+1}+\frac{1}{z+1}\)

\(\frac{zx+2z+1}{zx+z+x+1}=\frac{z}{z+1}+\frac{1}{x+1}\)

Từ đây ta có biểu thức ban đầu sẽ bằng

\(\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}\)

\(\left(\frac{x}{x+1}+\frac{1}{x+1}\right)+\left(\frac{y}{y+1}+\frac{1}{y+1}\right)+\left(\frac{z}{z+1}+\frac{1}{z+1}\right)=1+1+1=3\)

20 tháng 2 2017

CHÚ Ý: ab+a+b+1=a(b+1)+(b+1)=(a+1)(b+1)

Xét: \(\frac{xy+2x+1}{xy+x+y+1}=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}=\frac{x}{x+1}+\frac{1}{y+1}\)

Tương tự với 2 biểu thức còn lại ta được:

A=\(\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}\)

=\(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)