K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Áp dụng bất đẳng thức x^2+y^2 ≥ 2xy  nên ta có x^2+y^2+xy ≥ 3xy
Mà x^2+y^2+xy=x^2y^2 ≥ 0 nên suy ra x^2y^2+3xy ≤ 0 ⟺−3 ≤ xy ≤ 0
Vì x,y nguyên nên xy nguyên, vậy nên xy∈{−3,−2,−1,0}
Trường hợp xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)
Trường hợp xy=0 ta tìm được nghiệm (0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

26 tháng 8 2020

Ta có: \(x^2y^2+x^2+y^2+4xy=73\)

<=>  \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)

<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)

Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)

Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}

=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)

thay y vào pt (1) ... (tự làm)

Hoặc C2:

\(x^2y^2+x^2+y^2+4xy=73\)

<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)

<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)

Xét các TH xảy ra: 

+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)

(Tự tính)

7 tháng 10 2020

b) x2y + x + xy2 + y + 2xy = 9

xy(x + y + 2) + (x + y + 2) = 11

<=> (xy + 1)(x + y + 2) = 11

Xét các TH

+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9

+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)

\(2y^2+x-2y+5=xy\)

\(\Leftrightarrow8y^2-4xy+4x-8y+20=0\)

\(\Leftrightarrow\left(4y^2-4xy+x^2\right)-\left(x^2-4x+4\right)+\left(4y^2-8y+4\right)=-20\)

\(\Leftrightarrow\left(2y-x\right)^2-\left(x-2\right)^2+\left(2y-2\right)^2=-20\)

bn tự giải tiếp

9 tháng 1 2020

Làm tiếp bài bạn ɱ√ρ︵ƤUɮĞツ『ღƤℓαէїŋʉɱ ₣їɾεツ』⁀ᶜᵘᵗᵉ

\(\left(2y-x\right)^2-\left(x-2\right)^2+\left(2y-2\right)^2=-20\)

\(\Leftrightarrow\left(2y-2x-2\right)\left(2y-2\right)+\left(2y-2\right)^2=-20\)

\(\Leftrightarrow\left(2y-2\right)\left(2y-2x-2+2y-2\right)=-20\)

\(\Leftrightarrow2\left(y-1\right)\left(4y-2x-4\right)=-20\)

\(\Leftrightarrow\left(y-1\right)\left(2y-x-2\right)=-5\)

Đến đây đơn giản rồi