K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

x2 - xy + y2 - 4 = 0

Xét phương trình theo nghiệm x. Ta có

Để pt có nghiệm thì ∆\(\ge0\)

<=> y2 - 4(y2 - 4) \(\ge0\)

<=> \(y^2\le\frac{16}{3}\Leftrightarrow-2\le y\le2\)

Thế vào sẽ tìm được x, y nhé

29 tháng 5 2020

Để Phương trình có nghiệm nguyên thì \(\Delta=\left(-y\right)^2-4.1.\left(y^2-4\right)\ge0\Leftrightarrow-3y^2+16\ge0\)

\(\Leftrightarrow y^2\le\frac{16}{3}\)\(\Leftrightarrow\sqrt{\frac{-16}{3}}\le y\le\sqrt{\frac{16}{3}}\Leftrightarrow-2\le y\le2\)( vì y nguyên )

từ đó tìm được y,x

22 tháng 8 2020

1+1=2

2+2=3

3+3=4

4+4=5

5+5=6

6+6=7

7+7=8

8+8=9

9+9=10 ^^

28 tháng 8 2019

bằng 0 

Khó quá đi

12 tháng 8 2015

\(pt\Leftrightarrow\left(x-1\right)y=x^2+2\)

 \(+\text{Nếu }x-1=0\Leftrightarrow x=1\text{ thì }pt\text{ trở thành: }0=x^2+2\text{ (vô nghiệm)}\)

\(+\text{Xét }x-1\ne0\Leftrightarrow x\ne1\)

\(pt\Leftrightarrow y=\frac{x^2+2}{x-1}=\frac{x\left(x-1\right)+x-1+3}{x-1}=x+1+\frac{3}{x-1}\)

\(y\text{ nguyên nên }\frac{3}{x-1}\text{ nguyên}\Rightarrow x-1\in\text{Ư}\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)

Vậy các nghiệm nguyên của pt là

\(\left(x;y\right)=\left(-2;-2\right);\left(0;-2\right);\left(2;6\right);\left(4;6\right)\)

12 tháng 8 2015

x^2 - xy + y + 2 = 0

=> -xy + y +x^2 +2 = 0

=> -y[x-1] + x^2+2 = 0

=> y.[x-1] = x^2+2

=> y = [x^2+2] / [x-1 ] ; x

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

16 tháng 10 2016

x2 - 12y2 + xy - x + 3y + 5 = 0

<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5

<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5

<=> (x - 3y)(x + 3y + y - 1) = - 5

<=> (x - 3y)(x + 4y - 1) = - 5

<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)

Giải ra tìm được (x, y) = (2, 1; - 2, 1)

2 tháng 7 2017

Áp dụng bất đẳng thức x^2+y^2 ≥ 2xy  nên ta có x^2+y^2+xy ≥ 3xy
Mà x^2+y^2+xy=x^2y^2 ≥ 0 nên suy ra x^2y^2+3xy ≤ 0 ⟺−3 ≤ xy ≤ 0
Vì x,y nguyên nên xy nguyên, vậy nên xy∈{−3,−2,−1,0}
Trường hợp xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)
Trường hợp xy=0 ta tìm được nghiệm (0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm