Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát giả sử \(x^2\ge y^2\Leftrightarrow x^2+y^2\ge2y^2\Leftrightarrow2y^2\le100\)
\(\Rightarrow y^2\le50\)
\(\Rightarrow y^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
\(\circledast y^2=0\Leftrightarrow x^2=100\Leftrightarrow x=\pm10\) (chọn)
\(\circledast y^2=1\Leftrightarrow x^2=99\)(loại)
\(\circledast y^2=4\Leftrightarrow x^2=96\)(loại)
\(\circledast y^2=9\Leftrightarrow x^2=91\)(loại)
\(\circledast y^2=16\Leftrightarrow x^2=84\)(loại)
\(\circledast y^2=25\Leftrightarrow x^2=75\)(loại)
\(\circledast y^2=36\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\) (\(y=\pm6\)) (chọn)
\(\circledast y^2=49\Leftrightarrow x^2=51\)(loại)
Vậy các cặp x;y thỏa mãn là: \(\left(x;y\right)\rightarrow\left(0;\pm10\right);\left(8;\pm6\right)\)và hoán vị
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề