K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

25 tháng 11 2018

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

NV
26 tháng 12 2018

\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)

\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)

16 tháng 2 2019

Lấy (1) cộng (2), ta có:

\(\left(2a+1\right)x=a^2+4a+5\)\(\Rightarrow x=\dfrac{a^2+4a+5}{2a+1}\)

Thay vào (1): \(\dfrac{\left(a^2+4a+5\right)\left(a+1\right)-10a-5}{2a+1}.\dfrac{1}{a}\)\(=\dfrac{a^3+5a^2-a}{2a+1}.\dfrac{1}{a}=\dfrac{a^2+5a-1}{2a+1}\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}a^2+4a+5⋮2a+1\\a^2+5a-1⋮2a+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a+2\right)+2a+5⋮2a+1\\a^2+2a+3a-1⋮2a+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4⋮2a+1\\a+2⋮2a+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4⋮2a+1\\3⋮2a+1\end{matrix}\right.\)\(\Rightarrow2a+1\in\left\{\pm1\right\}\)\(\Rightarrow a\in\left\{-1;0\right\}\)

Vậy với a=-1;0 thì hpt có nghiệm (x;y) với x,y thuộc Z.

12 tháng 10 2019

<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1) 

Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ

mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý

vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3

vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{7}\)

\(\Rightarrow 7(x+y)=xy\)

\(\Leftrightarrow (xy-7x)-7y=0\)

\(\Leftrightarrow x(y-7)-7(y-7)=49\)

\(\Leftrightarrow (x-7)(y-7)=49(*)\)

Vì $x,y$ đều là số nguyên dương nên \(x-7,y-7\geq -6\)

Do đó từ $(*)$ ta có xét những TH sau:

TH1: \(\left\{\begin{matrix} x-7=1\\ y-7=49\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=8\\ y=56\end{matrix}\right.\) (t/m)

TH2: \(\left\{\begin{matrix} x-7=49\\ y-7=1\end{matrix}\right.\Rightarrow x=56; y=8\) (t/m)

TH3: \(\left\{\begin{matrix} x-7=7\\ y-7=7\end{matrix}\right.\Rightarrow x=y=14\) (t/m)

Vậy ......

NV
16 tháng 11 2018

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\Rightarrow\dfrac{1}{x}=\dfrac{y-7}{7y}\Rightarrow x=\dfrac{7y}{y-7}=7+\dfrac{49}{y-7}\)

Để x, y nguyên \(\Rightarrow49⋮y-7\Rightarrow y-7=Ư\left(49\right)=\left\{-49;-7;-1;1;7;49\right\}\)

\(y-7=-49\Rightarrow y=-42< 0\) (loại)

\(y-7=-7\Rightarrow y=0\) (loại)

\(y-7=-1\Rightarrow y=6\Rightarrow x=-42< 0\) (loại)

\(y-7=1\Rightarrow y=8\Rightarrow x=56\)

\(y-7=7\Rightarrow y=14\Rightarrow x=14\)

\(y-7=49\Rightarrow y=56\Rightarrow x=8\)

Vậy pt có 3 cặp nghiệm nguyên dương \(\left(x;y\right)=\left(56;8\right);\left(14;14\right);\left(8;56\right)\)

14 tháng 5 2021

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

14 tháng 5 2021

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)