Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có vt = (x - y)2 + ( x + x )2 +z2 = 12
ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12 chỉ co ( 4 , 4 ,4 ) vậy ta có hệ
( x - y )2 = z2 =4
pần còn lại bạn tự giải nha
\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)
\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)
\(\Leftrightarrow x\ge2\)
Với \(x\ge2\)thì ta suy ra được
\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)
Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:
\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1)
(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)
\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)
Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)
Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.
Vậy phương trình trên không có nghiệm nguyên.
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
\(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
\(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
\(2x^2+2y^2-2xy+y-x-10=0\)
\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)
Coi pt trên là pt bậc 2 ẩn x
\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)
\(=4y^2+4y+1-16y^2-8y+80\)
\(=-12y^2-4y+81\)
Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)
Giải nốt đi , đến đây dễ r