Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)
=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)
Do VT là số nguyên với x,y nguyên
=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)
+ \(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)
+ x=-1
=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )
=> PT vô nghiệm
Vậy PT vô nghiệm
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
a. \(\left\{\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left(y-2\right)\left(x-1\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y-2=0\\x-1=0\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y=2\\x=1\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}y=2\\3x+y=8\end{matrix}\right.\\\left\{\begin{matrix}x=1\\3x+y=8\end{matrix}\right.\end{matrix}\right.\)
Giải hệ phương trình ta được:
\(\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}x=1\\y=5\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình đã cho có tập nghiệm \(S=\left\{\left(2;2\right),\left(1;5\right)\right\}\)
b)\(\text{HPT}\Leftrightarrow \)\(\left\{\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a^2-4a=12\\b^2-2b=3\end{matrix}\right.\)\(\left(\left\{\begin{matrix}a=x+y\\b=x-y\end{matrix}\right.\right)\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}a=-2\\a=6\end{matrix}\right.\\\left[\begin{matrix}b=3\\b=-1\end{matrix}\right.\end{matrix}\right.\) Thay vào ...
ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên
\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)
từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được
\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)
=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)
=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)
zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)
=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)
mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)
zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0
zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)
zới y=2 , m=1 thì ta tính đc x=1
zới y=3 , m=1 thì ta tính đc x=-1
zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)