K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

x=1; y=2; z=3

hoặc x=-1; y=-2; z=-3

3 tháng 1 2018

+Xét \(x=y=z=0\)

+ Xét trong x;y;z có 1 số bằng 0

+ Xét \(x;y;z\ne0\)

Giả sử \(0< x\le y\le z\)

\(x+y+z=xyz\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\le\frac{3}{x^2}\)

\(\Rightarrow x^2\le3\)

\(\Rightarrow x=1\)

Thay x=1 ta được:

\(\frac{1}{y}+\frac{1}{z}+\frac{1}{yz}\le\frac{3}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y\in\left\{1;2;3\right\}\)

Bạn tự giải tiếp nhé

26 tháng 5 2016

1. \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

=> Dấu đẳng thức không xảy ra => Phương trình vô nghiệm.

2. \(x^2+x+1=x^2+\frac{2.x.1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

=> Dấu đẳng thức không xảy ra = > Phương trình vô nghiệm.

Cách giải thích khác : Vì \(x^2+x+1\)là bình phương thiếu của một tổng nên vô nghiệm.

Xin chào nhóm của bạn!

5 tháng 5 2019

Để đa thức có nghiệm thì \(x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

=.= hk tốt!!

giúp mình với

6 tháng 8 2018

\(P\left(x\right)=2x^3+4x^2-5x-1=0\)

<=>  \(2x^3-2x^2+6x^2-6x+x-1=0\)

<=>  \(2x^2\left(x-1\right)+6x\left(x-1\right)+x-1=0\)

<=> \(\left(x-1\right)\left(2x^2+6x+1\right)=0\)

<=>  \(x-1=0\)  (do 2x2 + 6x + 1 khác 0)

<=>  \(x=1\)

Vậy....

6 tháng 8 2018

\(P\left(x\right)=2x^3+4x^2-5x-1\)

\(P\left(x\right)=2x^3-2x^2+6x^2-6x+x-1\)

\(P\left(x\right)=2x^2\left(x-1\right)-6x\left(x-1\right)+\left(x-1\right)\)

\(P\left(x\right)=\left(x-1\right)\left(2x^2-6x+1\right)\)

Để P(x) có nghiệm \(\Rightarrow x-1=0\Leftrightarrow x=1\)

Vậy x = 1 là 1 nghiệm của P(x)

31 tháng 3 2019

\(3x^3+4x^2+2x+1=0\)

\(\Leftrightarrow\left(3x^3+x^2+x\right)+\left(3x^2+x+1\right)=0\)

\(\Leftrightarrow x\left(3x^2+x+1\right)+1\left(3x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x+1\right)=0\)

Ta có:\(3x^2+x+1=3\left(x^2+x.\frac{1}{3}+\frac{1}{3}\right)\)

\(=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{1}{3}\right)\)

\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{11}{36}\right]\ge3.\frac{11}{36}=\frac{11}{12}>0\forall x\)

Do đó x + 1 = 0 tức là x = -1

\(3x^3+3x^2+x^2+x+x+1=0\)

\(3x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)=0\)

\(\left(x+1\right).\left(3x^2+x+1\right)=0\)

+)\(3x^2+x+1=0\Leftrightarrow3.\left(x^2+x+\frac{1}{3}\right)=0\Leftrightarrow3.\left(x+\frac{1}{6}\right)^2+\frac{11}{12}=0\left(loai\right)\)

+) x+1=0 <=> x=-1

17 tháng 8 2018

ta có: f(x) = x4 + 2x2 - 2x2 - 6x - x4 + 2x2 - x3 + 8x -x3 - 2

f(x) = (x4 - x4) +  (2x2 + 2x2 -2x2) + (8x-6x) - (x3 + x3 ) - 2

f(x) = 2x2 + 2x - 2x3 - 2 = 2x2- 2x3 + 2x - 2

Để f(x) = 0

=> 2x2 - 2x3 + 2x - 2 = 0 

2x2.(x-1) + 2.(x-1) = 0

(x-1).(2x2+2) = 0

=> x - 1 = 0 => x = 1

2x2 + 2 = 0 => 2x2 = -2 => x2 = - 1 => không tìm được x

KL:...

31 tháng 3 2018

Nghiệm của đa thức làm cho:\(x^2-6x+5=0\Leftrightarrow x^2-x-5x+5=0\)

\(\Rightarrow x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=5\end{cases}}\)

Tập nghiệm của pt S={1,5}

31 tháng 3 2018

Ta có :

\(x^2-6x+5=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)-4=0\)

\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)

Vậy \(x\in\left\{1;5\right\}\)