K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

vì đen ta >0

=>gọi 2 nghiệm của pt là x1;x2

Ta có : x1+x2= -m(1)

x1*x2=n(2)

=>x1*x2-x1-x2=n+m=198 (4)

mà m=198-n(3)

Thay (1);(2)(3) vô (4) ta dc n-198+n=198

giải ra n rồi tìm m rồi tự tìm nghiệm

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

Lời giải:
Để PT có nghiệm nguyên thì:

$\Delta=m^2-4n=a^2$ với $a$ là số tự nhiên.

$\Rightarrow 4n=(m-a)(m+a)$

Vì $n$ là số nguyên tố nên và $m-a< m+a$ với $a$ tự nhiên, $m+a, m-a$ cùng tính chẵn lẻ nên ta xét các TH sau đây:

TH1: 

$m-a=2, m+a=2n\Rightarrow m=n+1$

$\Rightarrow m,n$ khác tính chẵn lẻ. Mà $m,n$ nguyên tố nên 1 trong 2 số bằng 2.

$n< m$ nên $n=2\Rightarrow m=3$.

TH2: 
$m-a=4, m+a=n$

Vì $m-a$ chẵn nên $m+a$ chẵn. Hay $n$ chẵn $\Rightarrow n=2$

$\Rightarrow m+a< m-a$ (vô lý - loại) 

Vậy........

 

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

Lời giải:
Để PT có nghiệm nguyên thì:

$\Delta=m^2-4n=a^2$ với $a$ là số tự nhiên.

$\Rightarrow 4n=(m-a)(m+a)$

Vì $n$ là số nguyên tố nên và $m-a< m+a$ với $a$ tự nhiên, $m+a, m-a$ cùng tính chẵn lẻ nên ta xét các TH sau đây:

TH1: 

$m-a=2, m+a=2n\Rightarrow m=n+1$

$\Rightarrow m,n$ khác tính chẵn lẻ. Mà $m,n$ nguyên tố nên 1 trong 2 số bằng 2.

$n< m$ nên $n=2\Rightarrow m=3$.

TH2: 
$m-a=4, m+a=n$

Vì $m-a$ chẵn nên $m+a$ chẵn. Hay $n$ chẵn $\Rightarrow n=2$

$\Rightarrow m+a< m-a$ (vô lý - loại) 

Vậy........

 

26 tháng 6 2015

gọi 2 nghiệm của pt là a,b (a,b thuộc Z).

Theo Viet: a + b = -p; a.b = q
p + q = 198 => -(a+b) + ab + 1 = 199 => (a-1)(b-1) = 199 = 199.1 = 1.199 = -199.-1 = -1. -199

Giải các hệ để tìm a,b
(1) a-1=199 ; b-1 = 1  hay a=200, b=2
(2) a-1=1 ; b-1 = 199 hay a=2; b=200
(3) a-1=-1; b-1 = -199 hay a=0,b=-198
(4) a-1=-199;b-1=-1 hay a=-198;b=0

9 tháng 5 2017

Do x0 là một nghiệm của phương trình nên \(x_0^2+mx_0+n=0\Rightarrow n=-mx_0-x_0^2\)

Thế vào phương trình (2) ta có: \(m^2+\left(-mx_0-x_0^2\right)^2=2017\)

\(\Rightarrow m^2+m^2x_0^2+2mx_0^3+x_0^4-2017=0\)

\(\Rightarrow\left(1+x_0^2\right)m^2+2x_0^3m+\left(x_0^4-2017\right)=0\left(1\right)\)

Để pt (1) có nghiệm thì  \(\Delta'\ge0\Rightarrow\left(x_0^3\right)^2-\left(1+x_0^2\right)\left(x_0^4-2017\right)\ge0\)

\(\Rightarrow-x_0^4+2017x_0^2+2017\ge0\)

\(\Rightarrow0\le x_0^2< 2018\Rightarrow\left|x_0\right|< \sqrt{2018}\left(đpcm\right)\)