K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Thiên bình có 102 thứ (1) lớp 8 chưa biết delta     

<=> \(\left(x^2+2\right)y=x^2+3x-5\\ \) 

\(\Leftrightarrow y=\frac{x^2+3x-5}{x^2+2}=1+\frac{3x-7}{x^2+2}\)

\(y\in Z\Leftrightarrow\frac{3x-7}{x^2+2}\in Z\) \(\Leftrightarrow\left|3x-7\right|\ge x^2+2\)=> \(-4\le x\le1\)

vô nghiệm

 <>x^2(x-y)+2(x-y)+x-5=0(1*) 
Denta theox 
1-4(x-y)[2(x-y)-5]>=0 
<>-8(x-y)^2+20(x-y)+1>=0 
<>[-10+V(108)]/-8=<(x-y)=< 
[10+V(108)]/8 
Vì x-y nguyên nên => 
0=<(x-y)=<2 
Vậy để ptr có no nguyên 
điều kiện cần là 
x-y=0 or x-y=1,x-y=2 
Đk đủ:bạn thay lần lượt 
các giá trị của x-y ở trên vào 1* 
nếu tìm đc x nguyên thì kết luận! 
Chúc bạn học tốt 
(V(108) là cb2 của 108)

8 tháng 2 2019

PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1) 

(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)

\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)

Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)

Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.

Vậy phương trình trên không có nghiệm nguyên.

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

20 tháng 11 2017

thiếu đề bài

20 tháng 11 2017

ta có vt = (x - y)2 + ( x + x )+z = 12

ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12  chỉ co ( 4 , 4 ,4 ) vậy ta có hệ

( x - y )= z2 =4

pần còn lại bạn tự giải nha

22 tháng 4 2017

\(x^2+xy+y^2=x^2y^2\)

\(x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Do \(xy\left(xy+1\right)\) là 2 số nguyên liên tiếp mà tích của chúng là một số chỉnh phương nên 1 trong 2 số phải bằng 0

Từ đây suy ra nghiệm x=y=0 hoặc x=1;y=-1 hoặc x=-1;y=1

27 tháng 2 2019

À uhm , tớ viết thiếu : xy = -1 chứ ko phải 1 nhé , Còn cách thì có nhiều , góp cho bạn 2 cách nữa : 

C1 , \(pt\Leftrightarrow4\left(x+y\right)^2=\left(2xy+1\right)^2-1\) (Tại sao thì ráng hiểu :V)

\(\Leftrightarrow4\left(x+y\right)^2-\left(2xy+1\right)^2=-1\)

\(\Leftrightarrow\left(2x+2y-2xy-1\right)\left(2x+2y+2xy+1\right)=-1\)

Úm ba la lập bảng là ra

C2,Dùng bđt cho lạ :V

Giả sử |x| < |y|

\(\Rightarrow x^2\le y^2;xy\le y^2\)

Khi đó  \(x^2+xy+y^2\le y^2+y^2+y^2=3y^2\)

\(\Leftrightarrow x^2y^2\le3y^2\)

\(\Leftrightarrow x^2\le3\)

\(\Leftrightarrow x^2\in\left\{0;1\right\}\)(Do x nguyên) 

Ngạc nhiên chưa !!! -_-

27 tháng 2 2019

Góp thêm cách nữa ạ:

                                        Lời giải

Nhân 4 vào mỗi vế

\(4x^2+4xy+4y^2=4x^2y^2\)

\(\Leftrightarrow\left(2x+y\right)^2+3y^2=4x^2y^2\)

\(\Leftrightarrow\left(2x+y\right)^2=y^2\left(4x^2-3\right)\)

Nếu y = 0 thì x = 0.Ta có nghiệm (0;0)

Nếu \(y\ne0\) thì \(4x^2-3=k^2\left(k\in N\right)\)

\(\Leftrightarrow\left(2x-k\right)\left(2x+k\right)=3\)

Dễ dàng tìm được \(x=\pm1\).Thay vào tìm được y.