Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ban copy link nay :http://olm.vn/hoi-dap/question/305600.html roi vao google tra la có
Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)
Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)
\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)
\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)
\(\Leftrightarrow1\ge xyz>0\)
Vì x,y,z nguyên
=> xyz=1
Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)
Cre: @tpokemont
Hãy tích nếu như bạn thông minh
Ai ko tích là bình thường
Còn ai dis là "..."
Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)
\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)
Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\); \(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)
Cộng lại,ta được :
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )
Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )
Dấu "=" xảy ra khi x = y = z = 1
Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1
Vậy ...
Áp dụng bất đẳng thứ Cauchy (AM-GM):
\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)
Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)
Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\) (1)
Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\) (2)
Và: \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\) (3)
Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)
Ta có: \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)
\(\Rightarrow xyz\ge0\)(1)
Ta lại có: \(x^2y^2+y^2z^2+Z^2x^2\ge3xyz\sqrt[3]{xyz}\)
\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)(2)
Từ (1) và (2) ta được: \(0\le xyz\le1\)
Mà x, y, z khác 0 nên suy ra xyz = 1
\(\Rightarrow\)(x, y, z) = (1,1,1; -1,-1,1; -1,1,-1; 1,-1,-1)
a) ĐKXĐ: \(x;y>0\)
Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)
\(\Rightarrow4x+4y-xy=0\)
\(\Rightarrow x\left(4-y\right)=-4y\)
\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)
\(\Rightarrow x=4-\frac{16}{4-y}\)
Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)
\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Tìm nốt y và thay vào tìm ra x
a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Không mất tính tổng quát giả sử: \(x\ge y\)
\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Leftrightarrow0< y\le8\)
\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{9}{xyz}=1\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
điều kiện : x,y,z khác 0
Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)
Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)
\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)
Áp dụng BĐT Cô-si cho 3 số dương,ta có :
\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)
Dấu "=" xảy ra khi | x | = | y | = | z |
Do đó : \(3=3\sqrt[3]{xyz}\)
\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)
+) Trường hợp x,y,z > 0 ta được x = y = z = 1
+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị
vậy....