Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)
Coi pt trên là pt bậc 2 ẩn x
Ta có : \(\Delta'=36-12y^2-9y-15\)
\(=-12y^2-9y+21\)
Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)
\(\Leftrightarrow-\frac{7}{4}\le y\le1\)
Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)
Rồi làm nốt
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
ĐK \(x\ne0\)
Chia cả 2 vế cho \(\frac{1}{x}\)ta được
\(\frac{3}{3x-4+\frac{1}{x}}+\frac{13}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x+\frac{1}{x}=y\)
\(\Rightarrow\frac{3}{y-4}+\frac{13}{y+2}=6\)
\(\Leftrightarrow16y-46=6\left(y-4\right)\left(y+2\right)\)
Đến đây tự giải nhé (Phá ngoặc rồi ghép cặp lại)
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\sqrt{2x+1}+x^2-3x+1=0\)
\(\Rightarrow\sqrt{2x+1}=-x^2+3x-1\)
\(\Rightarrow2x+1=x^4-6x^3+11x^2-6x+1\)
\(\Rightarrow x^4-6x^3+11x^2-8x=0\)
\(\Rightarrow x\left(x^3-6x^2+11x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-6x^2+11x-8=0\left(1\right)\end{cases}}\)
(1) => bấm máy ta nhận đc 1 nghiệm như mà lẻ quá
Vậy có 2 nghiệm
\(\sqrt{2x+1}=t\ge0\)\(\Rightarrow x=\frac{t^2-1}{2}\)
thay vài phương trình đã cho và phân tích nhân tử, ta được:
\(pt\rightarrow\left(t+1\right)\left(t^3-t^2-7t+11\right)=0\)
\(\Leftrightarrow t^3-t^2-7t+11=0\text{ (1)}\)\(do\text{ }t+1>0\)
Bấm máy tính thấy phương trình này chỉ có 1 nghiệm âm, do đó ta chứng minh phương trình này ko có nghiệm dương
\(\left(1\right)\Leftrightarrow t\left(t^2-4t+4\right)+3t^2-11t+11=0\)
\(\Leftrightarrow t\left(t-2\right)^2+3\left(t-\frac{11}{6}\right)^2+\frac{11}{12}=0\)
Thấy ngay phương trình này có VT > 0 nên vô nghiệm.
Vậy phương trình đã cho VÔ NGHIỆM.
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
mình giải khác @Aliba -@Aliba phân tích thành nhân tử. Mình làm bình thường nhân phân phối
\(\left(1\right)\Leftrightarrow x^2-\left(3y+2\right)x+2y^2+4y=0\)coi như hàm bậc 2 với x giải bình thường
\(\Delta\left(x\right)=\left(3y+2\right)^2-4\left(2y^2+4y\right)=\left(y-2\right)^2\) nhận phân phối ra giản ước là xong
\(\orbr{\begin{cases}x=\frac{3y+2-\left(y-2\right)}{2}=y+2\\x=\frac{3y+2+\left(y-2\right)}{2}=2y\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=x-2\\y=\frac{x}{2}\end{cases}}\) thấy y theo x không dúng x thấy y vào (2)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\\\left(x^2-5\right)=2x-2.\frac{x}{2}+5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=9\left(3\right)\\\left(x^2-5\right)^2=\left(x+5\right)\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}x_{1,2}=+-\sqrt{2}\\x_{3,4}=+-2\sqrt{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y_{1,2}=+-\sqrt{2}-2\\y_{3,4}=+-2\sqrt{2}-2\end{cases}}\)
\(\left(4\right)\Leftrightarrow x^4-10x^2-x+20=0\)\(\Leftrightarrow\left(x^2-ax+b\right)\left(x^2+ax+c\right)\)đồng nhất hệ số \(\hept{\begin{cases}a=1\\b=-5\\c=-4\end{cases}}\)
\(\left(4\right)\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)
\(\hept{\begin{cases}x^2-x-5=0\\x^2+x-4=0\end{cases}}\)\(\orbr{\begin{cases}\Delta=21\\\Delta=17\end{cases}}\)
\(\orbr{\begin{cases}x_{5,6}=\frac{1+-\sqrt{21}}{2}\\x_{7,8}=\frac{-1+-\sqrt{17}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y_{5,6}=\frac{1+-\sqrt{21}}{4}\\y_{7,8}=\frac{-1+-\sqrt{17}}{4}\end{cases}}\)
\(\hept{\begin{cases}x^2+2y^2-3xy-2x+4y=0\left(1\right)\\\left(x^2-5\right)^2=2x-2y+5\left(2\right)\end{cases}}\)
Xét \(\left(1\right)\Leftrightarrow\left(x^2-2xy\right)+\left(2y^2-xy\right)+\left(-2x+4y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x-y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=2+y\end{cases}}\)
Thế x = 2y vào (2) ta được
\(\left(4y^2-5\right)^2=4y-2y+5\)
\(\Leftrightarrow16y^4-40y^2-2y+20=0\)
\(\Leftrightarrow8y^4-20y^2-y+10=0\)
\(\Leftrightarrow\left(8y^4+4y^3-8y^2\right)+\left(-4y^3-2y^2+4y\right)+\left(-10y^2-5y+10\right)=0\)
\(\Leftrightarrow\left(2y^2+y-2\right)\left(4y^2-2y-5\right)=0\)
Tới đây thì đơn giản rồi. Cái còn lại làm tương tự
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
x,y là số nguyên tố đúng ko? bn có nhiueeuf câu hỏi nên mik trả lời nhầm.(ko phait thì thui nhé)
\(\left(3x^2+6x+3\right)+\left(3y^2+3y+1\right)+y^2-8=0\)
\(\Leftrightarrow3\left(x+1\right)^2+3\left(y+\frac{1}{2}\right)^2-\frac{9}{4}-8=0\)
\(\Leftrightarrow12\left(x+1\right)^2+3\left(y+1\right)^2=41\)
\(\Rightarrow12\left(x+1\right)^2\le41\Rightarrow\left(x+1\right)^2\le3\Rightarrow x+1\in\left\{1;0;-1\right\}\Rightarrow x\in\left\{0;-1;-2\right\}\)
Bạn làm nốt