K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

x=1

y=2

16 tháng 10 2020

Ta có: \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4y^2-y-1=0\)

\(\Leftrightarrow\left(x-y\right)^2+4y^2-y-1=0\)

Mà \(4y^2-4y-1=3y^2+\left(y^2-y\right)-1\)

\(=3y^2+y\left(y-1\right)-1\ge3\cdot1+0-1=2>0\)

\(\Rightarrow\left(x-y\right)^2+4y^2-y-1>0\)

=> pt vô nghiệm

2 tháng 8 2017

Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).

2 tháng 8 2017

Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
$x^2-2xy+5y^2=y+1$

$\Leftrightarrow x^2-2xy+y^2=y+1-4y^2$

$\Leftrightarrow y+1-4y^2=(x-y)^2\geq 0$

$\Leftrightarrow y+1-4y^2\geq 0$

$\Leftrightarrow 4y^2-y-1\leq 0$

$\Leftrightarrow 4y^2-y-3\leq -2<0$

$\Leftrightarrow (y-1)(4y+3)<0$

$\Leftrightarrow \frac{-3}{4}< y< 1$ 

$y$ nguyên nên $y=0$ 

Khi đó: $x^2=1\Leftrightarrow x=\pm 1$ 

Vậy $(x,y)=(\pm 1,0)$