Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+3x^2-2x-2=0\)
\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)
\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)
Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)
b) Đặt \(G_{\left(x\right)}=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(S=\left\{-\frac{1}{3}\right\}\)
c) Đặt \(A_{\left(x\right)}=0\)
\(\Leftrightarrow2x^2-4=0\)
\(\Leftrightarrow2x^2=4\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)
d) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)
e) Đặt P=0
\(\Leftrightarrow3x^2+4x^2+6x+3=0\)
\(\Leftrightarrow7x^2+6x+3=0\)
\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)
mà 7>0
nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)
\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)
Vậy: S=∅
a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5
=-x4-2x3-2x-5
Bậc của đa thức:4
Hệ số cao nhất:-1
Hệ số tự do:-5
N(x)=(-x4+2x4)+2x3-x2+3x+5
=x4+2x3-x2+3x+5
Bậc của đa thức:4
Hệ số cao nhất:1
Hệ số tự do:5
b)Thay x=-1 vào N(x) ta có:
(-1)4+2.(-1)3-(-1)2+3.(-1)+5
=1-2-1-3+5
=0
c)P(x)-M(x)=N(x)
=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)
=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)
=-x2+x
d)P(x)=-x2+x=-x(x-1)
Cho P(x)=0=>-x(x-1)=0
<=>-x=0 hoặc x-1=0
<=>x=0 hoặc x=1
Vậy...
Giải:
a)
- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)
\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)
\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)
\(f\left(x\right)=2-3x^4+4x+x^2\)
Sắp xếp: \(4x+x^2-3x^4+2\)
- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)
\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)
\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)
\(g\left(x\right)=2-5x^4+4x^2+4x\)
Sắp xếp: \(4x+4x^2-5x^4+2\)
b)
\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)
\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)
\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)
\(=8x+5x^2-\left(-2x^4\right)+4\)
\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)
\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)
\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)
\(=8x+\left(-3x^2\right)-8x^4\)
Bài 1:
Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
Bài 2:
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
b) Đặt \(g_{\left(x\right)}=0\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
c) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+8=0\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Vậy: S={-2}
d) Đặt \(p_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)(vì \(x^2+1>0\forall x\))
hay x=-1
Vậy: S={-1}
cho đa thức f(x)=a4x4+a3x3+a2x2+a1x+a0
biết rằng f(1)=f(-1);f(2)=f(-2)
chứng minh f(x)=f(-x) với mọi x
Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
M(x) = (2x4 - x4) + (5x3 - x3 - 4x3) + (-x2 + 3x2) + 1
M(x) = x4 + 2x2 + 1
a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4
M(-1) = (-1)4 + 2.(-1)2 + 1 = 4
b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0
=> x4 + 2x2 + 1 > 0
=> M(x) > 0
=> M(x) ko có nghiệm
f(1) = f(-1)
=> a4 + a3 + a2 + a1 + a0 = a4 - a3 + a2 - a1 + a0
=> a3 + a1 = - a3 - a1
=> a3 = a1 = 0 hoặc a3 = -a1 (1)
f(2) = f(-2)
=> 16a4 + 8a3 + 4a2 + 2a1 + a0 = 16a4 - 8a3 + 4a2 - 2a1 + a0
=> 8a3 + 2a1 = - 8a3 - 2a1
=> a3 = a1 = 0 hoặc 4a3 = -a1 (2)
(1) và (2) => a3 = a1 = 0
=> f(x) = a4x4 + a2x2+ a0
x4 và x2 là số mũ chẵn
=> x4 = (-x)4 và x2 = (-x)2
=> f(x) = f(-x) với mọi x
Theo mình biết thì cái này là hàm số chẵn.
bạn chỉ cần rút gọn những đa thức có phần biến giống nhau rồi khi đó bạn thấy phần biến nào có số mũ lớn rồi dần từ trên xuống dưới mình giải hết thì mỏi tay viết lắm :D nên chỉ gợi ý được thôi nếu biết thì sau này vânj dụng dễ dàng thì bài này bạn làm được tốt luôn ;D
BT1:
a, Sắp xếp từ lớn đến bé:
\(M_{\left(x\right)}=-x^6+x^4-4\times x^3+x^2-5\)
\(N_{\left(x\right)}=2\times x^5-x^4-x^3+x^2+x-1\)
câu b và câu c bạn áp dụng tính đa thức cột dọc là được nhưng câu c mình gợi ý : \(M_{\left(x\right)}-\left[-N_{\left(x\right)}\right]\)
Tích mình nha!
1. S = { 3;4 }
2. S={ -2; 1}
3. S={\(\frac{1}{2}\) ; 2;-2}
4.S={\(\frac{4}{3}\) ;2}
S la tap ngo nhek , xin k nao