K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. S = { 3;4 }

2. S={ -2; 1}

3. S={\(\frac{1}{2}\) ; 2;-2}

4.S={\(\frac{4}{3}\) ;2}

S la tap ngo nhek , xin k nao

a) Đặt \(f_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+3x^2-2x-2=0\)

\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)

\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)

b) Đặt \(G_{\left(x\right)}=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(S=\left\{-\frac{1}{3}\right\}\)

c) Đặt \(A_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2-4=0\)

\(\Leftrightarrow2x^2=4\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

d) Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2+3x-5=0\)

\(\Leftrightarrow2x^2+5x-2x-5=0\)

\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)

e) Đặt P=0

\(\Leftrightarrow3x^2+4x^2+6x+3=0\)

\(\Leftrightarrow7x^2+6x+3=0\)

\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)

mà 7>0

nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)

\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)

Vậy: S=∅

3 tháng 5 2017

a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5

=-x4-2x3-2x-5

Bậc của đa thức:4

Hệ số cao nhất:-1

Hệ số tự do:-5

N(x)=(-x4+2x4)+2x3-x2+3x+5

=x4+2x3-x2+3x+5

Bậc của đa thức:4

Hệ số cao nhất:1

Hệ số tự do:5

b)Thay x=-1 vào N(x) ta có:

(-1)4+2.(-1)3-(-1)2+3.(-1)+5

=1-2-1-3+5

=0

c)P(x)-M(x)=N(x)

=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)

=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)

=-x2+x

d)P(x)=-x2+x=-x(x-1)

Cho P(x)=0=>-x(x-1)=0

<=>-x=0 hoặc x-1=0

<=>x=0 hoặc x=1

Vậy...

8 tháng 5 2017

Giải:

a)

- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)

\(f\left(x\right)=2-3x^4+4x+x^2\)

Sắp xếp: \(4x+x^2-3x^4+2\)

- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)

\(g\left(x\right)=2-5x^4+4x^2+4x\)

Sắp xếp: \(4x+4x^2-5x^4+2\)

b)

\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)

\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)

\(=8x+5x^2-\left(-2x^4\right)+4\)

\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)

\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)

\(=8x+\left(-3x^2\right)-8x^4\)

Bài 1:

Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow x^2-5x+5=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)

Bài 2:

a) Đặt \(f_{\left(x\right)}=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

b) Đặt \(g_{\left(x\right)}=0\)

\(\Leftrightarrow x^3-4x=0\)

\(\Leftrightarrow x\left(x^2-4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: S={0;2;-2}

c) Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+8=0\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Vậy: S={-2}

d) Đặt \(p_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\)(vì \(x^2+1>0\forall x\))

hay x=-1

Vậy: S={-1}

13 tháng 7 2021

Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

M(x) = (2x4 - x4) + (5x3 - x3  - 4x3) + (-x2 + 3x2) + 1

M(x) = x4 + 2x2 + 1

a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4

M(-1) = (-1)4 + 2.(-1)2 + 1 = 4

b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0

=> x4  + 2x2 + 1 > 0

=> M(x) > 0

=> M(x) ko có nghiệm

20 tháng 3 2017

f(1) = f(-1)

=> a4 + a3 + a2 + a1 + a0 = a4 - a3 + a2 - a1 + a0

=> a3 + a1 = - a3 - a1

=> a3 = a1 = 0 hoặc a3 = -a1  (1)

f(2) = f(-2)

=> 16a4 + 8a3 + 4a2 + 2a1 + a0 = 16a4 - 8a3 + 4a2 - 2a1 + a0

=> 8a3 + 2a1 = - 8a3 - 2a1

=> a3 = a1 = 0 hoặc 4a3 = -a1   (2)

(1) và (2) => a3 = a1 = 0

=> f(x) = a4x+ a2x2+ a0

x4 và x2 là số mũ chẵn

=> x4 = (-x)4 và x2 = (-x)2

=> f(x) = f(-x) với mọi x

Theo mình biết thì cái này là hàm số chẵn.

3 tháng 4 2017

bạn chỉ cần rút gọn những đa thức có phần biến giống nhau rồi khi đó bạn thấy phần biến nào có số mũ lớn rồi dần từ trên xuống dưới mình giải hết thì mỏi tay viết lắm :D nên chỉ gợi ý được thôi nếu biết thì sau này vânj dụng dễ dàng thì bài này bạn làm được tốt luôn ;D

13 tháng 4 2017

BT1:

a, Sắp xếp từ lớn đến bé:

\(M_{\left(x\right)}=-x^6+x^4-4\times x^3+x^2-5\)

\(N_{\left(x\right)}=2\times x^5-x^4-x^3+x^2+x-1\)

câu b và câu c bạn áp dụng tính đa thức cột dọc là được nhưng câu c mình gợi ý : \(M_{\left(x\right)}-\left[-N_{\left(x\right)}\right]\)

Tích mình nha!haha