K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

\(P\left(x\right)=x^4+x^3+x+1\)

Ta có: \(x^4+x^3+x+1=0\)

\(\Rightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Rightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^3+1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^3=-1\\x=-1\end{matrix}\right.\Rightarrow x=-1\)

Vậy x = -1 là nghiệm của đa thức P(x)

25 tháng 5 2017

khocroichậm tay hơn bn rồiNguyễn Huy Tú

Bài 1: 

a: Đặt \(3x^2-7x+4=0\)

\(\Leftrightarrow3x^2-3x-4x+4=0\)

=>(x-1)(3x-4)=0

=>x=1 hoặc x=4/3

b: Đặt \(5x^2+7x+2=0\)

\(\Leftrightarrow5x^2+5x+2x+2=0\)

=>(x+1)(5x+2)=0

=>x=-1 hoặc x=-2/5

c: Đặt \(6x^2-5x+1=0\)

\(\Leftrightarrow6x^2-2x-3x+1=0\)

=>(3x-1)(2x-1)=0

=>x=1/3 hoặc x=1/2

14 tháng 6 2018

Ta có : 

\(P\left(x\right)=11-2x^3+4x^4+5x-x^4-2x\)

\(\Rightarrow P\left(x\right)=\left(4x^4-x^4\right)-2x^3+\left(5x-2x\right)+11\)

\(\Rightarrow P\left(x\right)=3x^4-2x^3+3x+11\)

\(Q\left(x\right)=2x^4-x+4-x^3+3x-5x^4+3x^3\)

\(\Rightarrow Q\left(x\right)=\left(2x^4-5x^4\right)+\left(3x^3-x^3\right)+\left(3x-x\right)+4\)

\(\Rightarrow Q\left(x\right)=-3x^4+2x^3+2x+4\)

\(H\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Rightarrow H\left(x\right)=3x^4-2x^3+3x+11+-3x^4+2x^3+2x+4\)

\(\Rightarrow H\left(x\right)=5x+15\)

\(\Rightarrow H\left(x\right)=5\left(x+3\right)\)

Xét \(H\left(x\right)=0\)

\(\Rightarrow5\left(x+3\right)=0\)

\(\Rightarrow x+3=0\)

\(\Rightarrow x=-3\)

Vậy \(x=-3\)là nghiệm của đa thức \(H\left(x\right)\)

14 tháng 5 2018

a ) Ta có :  \(A\left(x\right)=x^3+3x^2-4x-12\)

\(\Rightarrow A\left(2\right)=2^3+3.2^2-4.2-12\)

\(\Rightarrow A\left(2\right)=8+3.4-8-12\)

\(\Rightarrow A\left(2\right)=8+12-8-12\)

\(\Rightarrow A\left(2\right)=0\)

Vậy \(x=2\)là nghiệm của đa thức \(A\left(x\right)\)

\(B\left(x\right)=-2x^3+3x^2+4x+1\)

\(\Rightarrow B\left(2\right)=-2.2^3+3.2^2+4.2+1\)

\(\Rightarrow B\left(2\right)=-2.8+3.4+8+1\)

\(\Rightarrow B\left(2\right)=-16+12+8+1\)

\(\Rightarrow B\left(2\right)=5\ne0\)

Vậy \(x=2\)không là nghiệm của đa thức \(B\left(x\right)\)

b )     Tự làm nhé 

Chúc bạn học tốt !!! 

14 tháng 5 2018

a)   \(A\left(2\right)=2^3+3.2^2-4.2-12=0\)

=> \(x=2\)là nghiệm của đa thức  A(x)

     \(B\left(2\right)=-2.2^3+3.2^2+4.2+1=5\)

=>   \(x=2\)không là nghiệm của đa thức  B(x)

b)   \(A\left(x\right)+B\left(x\right)=\left(x^3+3x^2-4x-12\right)+\left(-2x^3+3x^2+4x+1\right)\)

                                    \(=-x^3+6x^2+13\)

    \(A\left(x\right)-B\left(x\right)=\left(x^3+3x^2-4x-12\right)-\left(-2x^3+3x^2+4x+1\right)\)

                                 \(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)

                                 \(=3x^3-8x+11\)

khi x=1 thì f(1)=0

f(1)= 3-7+5-36-4+8-a-1=0

<=> -32-a=0

<=> a=-32

Bài 2:

Đặt H(x)=0

\(\Leftrightarrow x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)