K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

b)\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\x-3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=3\\x=4\end{array}\right.\)

8 tháng 8 2016

a) Xét \(x^3-5x^2-4x+40=0\) 

\(x^2\left(x-5\right)-4x+20=-20\) 

\(x^2\left(x-5\right)-4\left(x-5\right)=-20\)

\(\left(x^2-4\right)\left(x-5\right)=-20\)

Từ đó : suy ra \(x-5\inƯ\left(-20\right)=\left\{=\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)

Sau đó lập bảng để tính

7 tháng 7 2016

C(x)= 2x-3=0 hoac 5x+7=0

        2x=0+3        5x=0-7

        2x=3            5x=-7

         x=3:2            x=-7:5

          x=1.5            x=-1.4

7 tháng 7 2016

a.

\(\left(2x-3\right)\times\left(5x+7\right)=0\)

TH1:

\(2x-3=0\)

\(2x=3\)

\(x=\frac{3}{2}\)

TH2:

\(5x+7=0\)

\(5x=-7\)

\(x=-\frac{7}{5}\)

Vậy \(C\left(x\right)\) có nghiệm là \(\frac{3}{2}\) hoặc \(-\frac{7}{5}\)

b.

\(\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)

\(15x^5+4x^2-8-15x^5+x+8=0\)

\(\left(15x^5-15x^5\right)+4x^2+x+\left(8-8\right)=0\)

\(x\left(4x-1\right)=0\)

TH1:

\(x=0\)

TH2:

\(4x-1=0\)

\(4x=1\)

\(x=\frac{1}{4}\)

Vậy \(D\left(x\right)\) có nghiệm là \(0\) hoặc \(\frac{1}{4}\)

c.

\(\left(5x^7-8x^2\right)-\left(4x^7+4^2\right)-\left(x^7+4\right)=0\)

\(5x^7-8x^2-4x^7-16-x^7-4=0\)

\(\left(5x^7-4x^7-x^7\right)-8x^2-\left(16-4\right)=0\)

\(-8x^2-12=0\)

\(-8x^2=12\)

\(x^2=-\frac{12}{8}\)

mà \(x^2\ge0\) với mọi x

=> \(E\left(x\right)\) vô nghiệm

7 tháng 7 2016

\(a,C\left(x\right)=\left(2x-3\right)\left(5x+7\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}2x-3=0\\5x+7=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{7}{5}\end{array}\right.\)

Vậy \(x=\frac{3}{2}\) và \(x=-\frac{7}{5}\) là nghiệm của đa thức C(x)

\(b,D\left(x\right)=\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)

\(\Leftrightarrow15x^5+4x^2-8-15x^5+x+8=0\)

\(\Leftrightarrow4x^2+x=0\) \(\Leftrightarrow x\left(4x+1\right)=0\)  \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\4x+1=0\end{array}\right.\)  \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{4}\end{array}\right.\)

Vậy \(x=0\) và \(x=-\frac{1}{4}\) là nghiệm đa thức D(x)

\(c,E\left(x\right)=\left(5x^7-8x^2\right)-\left(4x^7+4x^4\right)-\left(x^7+4\right)=0\)

\(\Leftrightarrow5x^7-8x^2-4x^7-4x^4-x^7-4=0\)

\(\Leftrightarrow-8x^2-4x^4-4=0\)

\(\Leftrightarrow-4\left(2x^2+x^4+1\right)=0\)

\(\Leftrightarrow2x^2+x^4+1=0\) \(\Leftrightarrow x^4+x^2+x^2+1=0\) 

\(\Leftrightarrow x^2\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=0\) \(\Leftrightarrow x^2+1=0\) \(\Leftrightarrow x^2=-1\) \(\Rightarrow x\in\varnothing\)

Vậy E(x) vô nghiệm

3 tháng 4 2018

Căng, sự thật là nó rất căng

Nhg dù sao thì.....

1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)

Xét \(A\left(x\right)=0\)

\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)

\(\Rightarrow-3x^2-12x+15=0\)

\(\Rightarrow-3x^2+3x-15x+15=0\)

\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)

Xét \(B\left(x\right)=0\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)

Đó là những j mình biết khocroikhocroi

5 tháng 2 2018

1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)

\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)

2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)

tương tụ lm tiếp nhe buồn ngủ quá rồi !

Bài 1:

Đề sai bạn ơi, phải là A(x)=x3-2x2+x-5

a, \(A\left(x\right)+B\left(x\right)=x^3-2x^2+x-5-x^3+2x^2+3x-9\)\(=4x-16\)

\(A\left(x\right)-B\left(x\right)=x^3-2x^2+x-5+x^3-2x^2-3x+9\)\(=2x^3-4x^2-2x+4\)

b, \(A\left(x\right)+B\left(x\right)=4x-16=4\left(x-4\right)\)\(\Rightarrow x=4\)

Vậy nghiệm của A(x)+B(x) là 4

Bài 2:

a, \(C\left(x\right)=-8x^4+5x^4+2x^3-4x^3+x^2+x+5\)\(=-3x^4-2x^3+x^2+x+5\)

\(D\left(x\right)=3,5+x^4-4x^3-4x^3+7-2x^4-3x^5\)\(=-3x^5+x^4-2x^4-4x^3-4x^3+3.5+7\)

\(=-3x^5-x^4-8x^3+10,5\)

b, \(C\left(x\right)+D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(-3x^5-x^4-8x^3+10,5\)\(=-3x^5-4x^4-10x^3+x^2+x+15,5\)

\(Q\left(x\right)=\)\(C\left(x\right)-D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(+3x^5+x^4+8x^3-10,5\)

\(=3x^5-2x^4+6x^3+x^2+x-5,5\)

c, \(D\left(x\right)=\)\(-3x^5-x^4-8x^3+10,5\)(not ra)

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

29 tháng 4 2018

A(x) = 5x\(^4\) - 5 + 6x\(^3\) +x\(^4\) - 5x -12

=\(6x^4+6x^3\)-5x-17

B(x) = 8x\(^4\) +2x\(^3\) - 2x\(^4\) + 4x\(^3\) - 5x - 15 - 2x\(^3\)

=\(6x^4\)+\(4x^3\)-5x-15

a,C(x)=A(x)-B(x)=(\(6x^4+6x^3\)-5x-17)-(\(6x^4\)+\(4x^3\)-5x-15)

=\(6x^4+6x^3\)-5x-17-\(6x^4\)-\(4x^3\)+5x+15

=\((6x^4-6x^4)\)+\((6x^3-4x^3)\)+(-5x+5x)+ (-17-15)

= \(2x^3-32\)

b,C(x)=0<=>\(2x^3-32=0\)

=>\(2x^3=32\)

=>\(x^3=16\)

vậy C(x) vô nghiệm

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2