K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

a/ 

M(x) = ( 6 - 3x ) - 2x + 5 = 0

     <=> 6 - 3x - 2x + 5     = 0

     <=>       -5x                = 0 - 6 - 5

     <=>       -5x                = -11

     <=>           x               = -11 : ( -5 ) = 11/5

b/ N(x) = x^2 + x = 0

          <=> x ( x + 1 ) = 0

          \(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

c/ Q(x) = 3x - 3 = 0

         <=> 3x     = 3

         <=> x       = 1

7 tháng 4 2017

a) M(x)=(6-3x)-2x+5=0 <=> 6-3x-2x+5=0

<=> 11=5x => x=\(\frac{11}{5}\)

b) N(x)=x2+x=x(x+1)=0

=> x1=0 và x2=-1

c) Q(x)=3x-3=0 => 3x=3 => x=3:3=1

ĐS: x=1

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

20 tháng 6 2020

minh cám ơn bạn rất nhiều

8 tháng 5 2017

a) P(x)=5x- 3x - x + 7

Q(x)=-5x3- x+ 2x + 2x -3 - 2

b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x+ 2x + 2x - 3 - 2 )

                       =5x- 3x - x + 7 - 5x- x+ 2x + 2x - 3 - 2

                       =(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

           => M = -x2+2

P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)

               = 5x3-3x-x+7+5x3-x2+2x+2x-3-2

               =(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

       => N =10x3 -x2 +2

c)-x2+2=0

-x2=0+2

-x2=2

=>-x2=\(-\sqrt{2}\)

10 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x = 5x3 + ( -3x - x ) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + ( 2x + 2x ) - x2 + ( -3 - 2 ) = -5x3 + 4x - x2 - 5

M(x) = P(x) + Q(x) 

= 5x3 - 4x + 7 + ( -5x3 + 4x - x2 - 5 )

= ( 5x3 - 5x3 ) + ( 4x - 4x ) - x2 + ( 7 - 5 )

= -x2 + 2

N(x) = P(x) - Q(x) 

= ( 5x3 - 4x + 7 ) - ( -5x3 + 4x - x2 - 5 )

= 5x3 - 4x + 7 + 5x3 - 4x + x2 + 5

= ( 5x3 + 5x3 ) + ( -4x - 4x ) + x2 + ( 7 + 5 )

= 10x3 - 8x + x2 + 12

M(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

             <=> x2 = 2

             <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của M(x) là \(\pm\sqrt{2}\)

22 tháng 4 2017

a. Sắp xếp theo lũy thừa giảm dần của biến:

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)

b. P(x) - Q(x)=\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\right)\)

=\(5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-\dfrac{1}{4}\)

=\(\left(5x^5+x^5\right)+\left(-4x^4-2x^4\right)+\left(-2x^3+2x^3\right)+\left(4x^2-3x^2\right)+\left(3x+x\right)+\left(6-\dfrac{1}{4}\right)\)

=\(6x^5-6x^4+x^2+4x+\dfrac{23}{4}\)

c.Ta có:\(P\left(-1\right)=5.\left(-1\right)^5-4.\left(-1\right)^4-2.\left(-1\right)^3+4.\left(-1\right)^2+3.\left(-1\right)+6\)

= -5 -4 +2 +4 -3 +6

= 0

\(Q\left(x\right)=-\left(-1\right)^5+2.\left(-1\right)^4-2.\left(-1\right)^3+3.\left(-1\right)^2-\left(-1\right)+\dfrac{1}{4}\)

= 1 + 2 +2 +3 +1 +\(\dfrac{1}{4}\)

= \(\dfrac{37}{4}\ne0\)

Vậy x=-1 là nghiệm của đa thức P(x) nhưng k là nghiệm của đa thức Q(x)

Nhìn tưởng đề sai ... nhưng nó có sai đâu :v

a, Ta có :

 \(P\left(x\right)=5x^3-3x+2-x-x^2+\frac{3}{5}x+3=5x^3-\frac{17}{5}x+5-x^2\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3+4x-5-x^2\)

b, Ta có : 

\(M\left(x\right)=5x^3-\frac{17}{5}x+5-x^2-5x^3+4x-5-x^2=\frac{3}{5}x-2x^2\)

Tương tự vs N(x)

c, Ta có : \(M\left(x\right)=\frac{3}{5}x-2x^2=0\)

\(\Leftrightarrow x\left(\frac{3}{5}-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{3}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{10}\end{cases}}}\)

16 tháng 6 2020

a) P(x) = 5x^3 - 3x + 2 - x - x^2 + 3/5x + 3

            = 5x^3 - x^2 + (-3x - x + 3/5x) + (2 + 3)

            = 5x^3 - x^2 - 17/5x + 5

Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2

        = -5x^3 + (2x + 2x) - x^2 + (-3 - 2)

        = -5x^3 + 4x - x^2 - 5

b) M(x) = P(x) + Q(x)

            =  5x^3 - x^2 - 17/5x + 5 + (-5x^3) + 4x - x^2 - 5

            = (5x^3 - 5x^3) + (-x^2 - x^2) + (-17/5x + 4x)  + (5 - 5)

            = -2x^2 + 3/5x

N(x) = P(x) - Q(x)

        = 5x^3 - x^2 - 17/5x + 5 - (-5x^3 + 4x - x^2 - 5)

        = 5x^3 - x^2 - 17/5x + 5 + 5x^3 - 4x + x^2 + 5

        = (5x^3 + 5x^3) + (-x^2 + x^2) + (-17/5x - 4x) + (5 + 5)

        = 10x^3 - 37/5x + 10

c) M(x) = -2x^2 + 3/5x = 0

<=> -x(2x - 3/5) = 0

<=> -x = 0 hoặc 2x - 3/5 = 0

<=> x = 0 hoặc 2x = 3/5

<=> x = 0 hoặc x = 3/10

Vậy: nghiệm của M(x) là 3/10

12 tháng 5 2020
https://i.imgur.com/9L99WWw.jpg
13 tháng 5 2020

Nhưng tại sao bạn không giải thích câu c) vậy?
Đúng là có đúng nhưng mình muốn lời giải chính xác và đầy đủ hơn
Tuy nhiên, cảm ơn bạn đã trả lời câu hỏi của mình
eoeo

26 tháng 4 2017

a) P(x) = 5x4 + 2x2 - 3x3 - 4x4+ 3x3 - x + 5

= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + 2x2 -x + 5

= x4 +2x2 - x +5

Q(x) = x - 5x3 - x2 - x4 + 5x3 - x2 + 3x - 1

= -x4 + ( 5x3 - 5x3 ) - ( x2 + x2 ) + 3x -1

= -x4 - 2x2 + 3x -1

b) P(x) + Q(x) = (x4 + 2x2 - x +5) + (-x4 - 2x2 + 3x -1)

= x4 + 2x2 - x +5 - x4 - 2x2 + 3x -1

= ( x4 -x4 ) + ( 2x2 - 2x2 ) + ( 3x - x ) + ( 5 - 1 )

= 2x + 4

c) Để đa thức có nghiệm thì A(x) = 0

hay P(x) + Q(x) = 0

2x + 4 = 0

2x = -4

x = -4 : 2 = -2

Vậy x = -2 là nghiệm của đa thức A(x)

tick cho mk nha các bn

26 tháng 4 2017

a )\(P\left(x\right)=5x^4+2x^2-3x^3-4x^4+3x^3-x+5\)

\(=x^4+2x^2-x+5\).

\(Q\left(x\right)=x-5x^3-x^2-x^4+5x^3-x^2+3x-1\)

\(=-x^4-2x^2+4x-1\)

b ) \(P\left(x\right)+Q\left(x\right)=x^4+2x^2-x+5-x^4-2x^2+4x-1=3x+4\)

c ) \(Ax=3x+4=0\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

Vậy nghiệm của \(A\left(x\right)=-\dfrac{4}{3}\)