\(\dfrac{1}{3}\)x - 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2024

Cho Q(x) = 0

⇒ 5 - 2x = 0

2x = 5 - 0

2x = 5

x = 5/2

Vậy nghiệm của đa thức Q(x) là x = 5/2

----------

Cho H(x) = 0

⇒ 1/3 x - 2/3 = 0

1/3 x = 2/3

x = 2/3 : 1/3

x = 2

Vậy nghiệm của đa thức H(x) là x = 2

--------

Cho K(x) = 0

⇒ -5x + 1/3 = 0

-5x = 0 - 1/3

-5x = -1/3

x = -1/3 : (-5)

x = 1/15

Vậy nghiệm của đa thức K(x) là x = 1/15

8 tháng 4 2017

a) Đặt A(x) = 0

Ta có:

3(x + 2) - 2x(x + 2) = 0

=> (x + 2)(3 - 2x) = 0

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)

b) Đặt B(x) = 0

Ta có:

2x + 8 - 23 = 0

=> 2x + 8 = 23

=> 2x = 15

\(\Rightarrow x=\dfrac{15}{2}\)

Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)

c) Đặt C(x) = 0

Ta có:

-x5 + 5 = 0

=> -x5 = -5

=> x5 = 5

\(\Rightarrow x=\sqrt[5]{5}\)

Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)

d) Đặt D(x) = 0

Ta có:

2x3 - 18x = 0

=> x(2x2 - 18) = 0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)

Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)

e) Đặt E(x) = 0

Ta có:

\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)

\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)

g) Đặt G(x) = 0

Ta có:

\(\dfrac{4}{25}-x^2=0\)

\(\Rightarrow x^2=\dfrac{4}{25}\)

\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)

Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)

h) Đặt H(x) = 0

Ta có:

x2 - 2x + 1 = 0

=> x2 - 2x = -1

=> x(x - 2) = -1

=> Ta có trường hợp:

+/ x = -1

Và x - 2 = 1 => x = 3

\(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1

+/ x = 1

Và x - 2 = -1 => x = 1

Vậy nghiệm của đa thức H(x) là x = 1

k) Đặt K(x) = 0

Ta có:

5x . (-2x2) . 4x . (-6x) = 0

=> 240x5 = 0

=> x5 = 0

=> x = 0

Vậy nghiệm của đa thức K(x) là x = 0

8 tháng 4 2017

Cần đáp án hay cả cách làm bạn ơi

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

a: Đặt A=0

=>-2/3x=5/9

hay x=-5/6

b: Đặt B(x)=0

=>(x-2/5)(x+2/5)=0

=>x=2/5 hoặc x=-2/5

c: Đặt C(X)=0

\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)

\(\Leftrightarrow x^3=-\dfrac{8}{27}\)

hay x=-2/3

28 tháng 6 2017

a, \(\dfrac{5}{6}-\left|2-x\right|=\dfrac{1}{3}\Rightarrow\dfrac{5}{6}-\dfrac{1}{3}=\left|2-x\right|\)

<=> \(\dfrac{1}{2}=\left|2-x\right|\) \(\Leftrightarrow\left[{}\begin{matrix}2-x=\dfrac{1}{2}\\2-x=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

==================

Mấy câu sau tương tự thôi

21 tháng 1 2018

a)\(\dfrac{3}{2}hay\dfrac{-3}{2}\)

b)\(\dfrac{13}{20}hay\dfrac{-13}{20}\)

c)\(\dfrac{11}{6}hay\dfrac{-11}{6}\)

d)\(\dfrac{4}{3}hay\dfrac{-4}{3}\)

e)\(\dfrac{1}{5}hay\dfrac{-1}{5}\)

Đây là câu trả lời của mình

Hay có nghĩa là hoặc

a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)

mà x<0

nên x=-16/5

b: \(\left|x\right|=-2.1\)

nên \(x\in\varnothing\)

c: \(\left|x-3.5\right|=5\)

=>x-3,5=5 hoặc x-3,5=-5

=>x=8,5 hoặc x=-1,5

d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=>|x+3/4|=1/2

=>x+3/4=1/2 hoặc x+3/4=-1/2

=>x=-1/4 hoặc x=-5/4

15 tháng 4 2018

a) \(2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^3-2x=0\)

\(\Leftrightarrow x\left(x^2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

c) \(x^6+1=0\)

\(\Leftrightarrow x^6=-1\)

Ta có : \(x^6\ge0\) với mọi x

Mà : -1 < 0

=> Vô nghiệm

d) \(x^3+2x=0\)

\(\Leftrightarrow x\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)

e) \(x^5+8x^2=0\)

\(\Leftrightarrow x^2\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

f) \(x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)

g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)

30 tháng 8 2019

1) -2/3

1: \(\Leftrightarrow3x+4=2\)

=>3x=-2

=>x=-2/3

2: \(\Leftrightarrow7x-7=6x-30\)

=>x=-23

3: =>\(5x-5=3x+9\)

=>2x=14

=>x=7

4: =>9x+15=14x+7

=>-5x=-8

=>x=8/5

18 tháng 4 2018

\(d.Q=\left(\dfrac{1}{2}x-1\right).\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=0\)

\(\Rightarrow\dfrac{1}{2}x-1=0\Rightarrow x=2\)

e. \(-4x+3=0\Rightarrow-4x=-3\Rightarrow x=\dfrac{4}{3}\)

g. \(x^2+4x-3=0\Rightarrow x^2+2.2x+4-7=0\)

\(\Rightarrow\left(x+2\right)^2-7=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{7}\\x+2=-\sqrt{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{7}\\-2-\sqrt{7}\end{matrix}\right.\)

h.

\(x^2+4x+5=0\)

Ta có:

\(x^2+4x+5=x^2+2.x.2+4+1=\left(x+2\right)^2+1>0\)

=> đa thức vô nghiệm

18 tháng 4 2018

i)\(2x^2-2x+3=0\)

\(\Leftrightarrow\left(\sqrt{2}x\right)^2-2\sqrt{2}\cdot\dfrac{1}{\sqrt{2}}x+\left(\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(\sqrt{2}x-\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)(vô nghiệm)

a: Đặt A(x)=0

=>1/2x-3/4x+3/2=0

=>-1/2x=-3/2

hay x=3

b: Đặt B(x)=0

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-25\right)=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-5\right)\left(\dfrac{1}{2}x+5\right)=0\)

hay \(x\in\left\{0;10;-10\right\}\)

c: Đặt C(x)=0

\(\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)=0\)

=>x-2=0

hay x=2

d: Đặt D(x)=0

\(\Rightarrow2x^2-x+10=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot2\cdot10=-79< 0\)

DO đó: PTVN