Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 3.(2x2 - 4x - 3) - 2.(2x2 - 6x - 9) = 0 => 6x2 - 12x - 9 - 4x2 + 12x + 18 = 0 => 2x2 + 9 = 0 => x2 = -9/2 => vô nghiệm
b/ (3x + 5).(2x - 4) = 0 => 3x + 5 = 0 => x = -5/3
hoặc 2x - 4 = 0 => 2x = 4 => x = 2
Vậy x = -5/3 , x = 2
c/ (x2 - 2x + 2)2 - (x2 - 2x + 2) = 0 => (x2 - 2x + 2).(x2 - 2x + 2 - 1) = 0 => (x2 - 2x + 2).(x2 - 2x + 1) = 0
=> x2 - 2x + 2 = 0 , mà x2 - 2x + 2 > 0 => vô nghiệm
hoặc x2 - 2x + 1 = 0 => (x - 1)2 = 0 => x = 1
Vậy x = 1
4(x+y)=11+xy <=> 4x+4y=11+xy
<=> xy-4y=4x-11 <=> y(x-4)=4x-11
=> \(y=\frac{4x-11}{x-4}=\frac{4x-16+5}{x-4}=\frac{4\left(x-4\right)+5}{x-4}\)=> \(y=4+\frac{5}{x-4}\)
Để y nguyên => x-4=(-5,-1,1,5)
x-4 | -5 | -1 | 1 | 5 |
x | -1 | 3 | 5 | 9 |
y | 3 | -1 | 9 | 5 |
Các cặp (x,y) thỏa mãn là (-1,3); (3,-1); (5,9); (9,5)
b/ x3-2x-4=0
<=> x3-4x+2x-4=0
<=> x(x2-4)+2(x-2)=0
<=> x(x-2)(x+2)+2(x-2)=0
<=> (x-2)(x2+2x+2)=0
Nhận thấy, x2+2x+2=x2+2x+1+1 = (x+1)2+1 > 0 với mọi x
=> Phương trình có nghiệm duy nhất là: x-2=0 <=> x=2
Đáp số: x=2
-Đặt \(x^3-2x-4=0\)
\(\Leftrightarrow x^3-2x^2+2x^2-4x+2x-4=0\)
\(\Leftrightarrow x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x-2=0\) hay \(x^2+2x+2=0\)
\(\Leftrightarrow x=2\) hay \(x^2+2x+1+2=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+1\right)^2+1=0\) (vô nghiệm vì \(\left(x+1\right)^2+1\ge1\forall x\))
-Vậy nghiệm của đa thức \(x^3-2x-4\) là \(x=2\)
Thay x = 1 vào ta được : \(-1+1+1-1=0\)
Vậy x = 1 là nghiệm của đa thức : \(-x^4+x^3+x^2-1\)
Thay x = 1 vào ta được : \(1-2+5-3=1\)
Vậy x = 1 ko là nghiệm của đa thức : \(x^4-2x^3+5x-3\)
\(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\)
vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)
vậy MIN = 5 . dấu "=" xảy ra khi và chỉ khi x = 2
1. a) P= x^2-2x+5=(x^2-2x+1)+4=(x-1)^2 +4
Nhận xét: (x-1)^2 >=0 (do bình phương của 1 số luôn không âm)
=> (x-1)^2+4>=4(cộng cả 2 vế với 4)
hay P>= 4 dấu bằng xảy ra khi và chỉ khi x=1
vậy Pmin =4 <=> x=1
b) B= x^2+y^2-x+6y+10=(x^2-2.1/2.x+1/4)+(y^2-2...
Nhận xét: (x-1/2)^2>=0 (do bình phương của 1 số luôn không âm)
(y-3)^2>=0 (do bình phương của 1 số luôn không âm)
=>(x-1/2)^2+(y-3)^2>=0
=>(x-1/2)^2+(y-3)^2+3/4>=3/4
hay B>=3/4 dấu bằng xảy ra <=> x=1/2;y=3
vậy Bmin =3/4 <=>x=1/2,y=3
2. a) A= -x^2+4x+3=-(x^2-2.2.x-3)=-(x^2-2.2.x+4-7...
nhận xét:(x-2)^2>=0 (do bình phương của 1 số luôn không âm)
=>-(x-2)^2<=0
=>-(x-2)^2+7<=7
hay A<=7 dấu bằng xảy ra khi và chỉ khi x=2
vậy A max =7 <=>x=2
b)B=x-x^2=-(x^2-x)=-(x^2-2.x.1/2+1/4-1/4...
nhận xét tương tự thì B<=1/4 vậy B max =1/4 <=>x=1/2
c)C=2x-2x^2-5=-2(x^2-x+5/2)=-2(x^2-2.x.1...